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ABSTRACT

Caches are at the heart of latency-sensitive systems. In this paper,

we identify a growing challenge for the design of latency-minimizing

caches called delayed hits. Delayed hits occur at high throughput, when

multiple requests to the same object queue up before an outstanding

cache miss is resolved. This effect increases latencies beyond the predic-

tions of traditional caching models and simulations; in fact, caching

algorithms are designed as if delayed hits simply didn’t exist. We show

that traditional caching strategies – even so called ‘optimal’ algorithms

–can fail tominimize latency in thepresenceofdelayedhits.Wedesigna

new, latency-optimal offline cachingalgorithmcalledbelatedlywhich

reduces average latencies by up to 45% compared to the traditional,

hit-rate optimal Belady’s algorithm. Using belatedly as our guide,

we show that incorporating an object’s ‘aggregate delay’ into online

caching heuristics can improve latencies for practical caching systems

by up to 40%. We implement a prototype, Minimum-AggregateDelay

(mad), within a CDN caching node. Using a CDN production trace and

backends deployed in different geographic locations, we show thatmad

can reduce latencies by 12-18% depending on the backend RTTs.
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1 INTRODUCTION

Caches are key components of the computer systems toolkit: they

reduce bandwidth consumption to a bottlenecked backing store,

they improve throughput for memory-intensive services, and they

reduce read delays for latency-sensitive applications. Consequently,

caches appear across seemingly every class of computer system:

e.g., in microprocessors [27], in distributed file systems [51], in CDN

proxies [12, 21], and in software switches [47].

In this paper, we focus on a surprisingly overlooked aspect of

caching and latency. Caching models and simulators assume that

there are exactly two possible outcomes when an object is requested:
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a low-latency ‘hit’, or a higher latency ‘miss.’ In reality, there is a

third potential outcome: a delayed hit [25, 56]. Delayed hits occur

in high-throughput systems when multiple requests for the same

object occur before the object is fetched from the backing store.

Our group first encountered delayed hits on an FPGA-based soft-

ware switch, with incoming packets triggering access to a flow

context stored in either an SRAM-based cache (5 ns reads), or a
DRAM-based global backing store (100 ns reads). When a flow’s

packet results in a cache miss, it triggers the 100 ns fetch operation.
At high throughput, a second packet of the same flow arrives before

100 ns have passed. This packet requests the same object, and waits

for it to return from the fetch initiated by the first packet. While the

second packet does not have to wait the full 100 ns for the object to
arrive, it also does not experience a 5 ns ‘hit’ either. Per traditional
caching literature, the request corresponding to the second packet

would be counted as a hit. In reality, this second packet experiences

a slower, ‘delayed hit’.

We demonstrate throughout this paper that the traditional caching

objective of hit-rate maximization and the related goal of latency min-

imization are not equivalent problems when some hits are delayed.

We argue that therefore we need new algorithms for latency-sensitive

caching systems.

One way to understand fundamental trade-offs in caching design

is by studying an offline-optimal algorithm. The classic such algo-

rithm is called Belady’s algorithm [7]. Unlike real caching systems,

offline-optimal algorithms assume an oracle with perfect knowl-

edge of future requests. Offline algorithms can provide guidance and

bounds for practical algorithms, e.g., if the offline-optimal algorithm

achieves ak%hit-rate, then any online algorithmwill achieve atmost

k%. In the past, understanding which objects an offline algorithm

chooses to cache or evict has often guided the design of practical

systems [9, 29, 55]. Our approach to understanding delayed hits sim-

ilarly uses lessons from the offline setting to guide our design of a

practical online system.

Limitations of existing algorithms: We begin in §2 by showing

that Belady’s algorithm, the optimal offline approach for hit-rate

maximization, does not guarantee minimal latency in the presence

of delayed hits. We then measure the gap between hit-rate and

latency-orientedregimesoncache traces includinga10Gbps linkand

a latency-sensitiveCDN.Wefind that latencyevaluationsof practical

caching algorithms (e.g., LRU [64]) based on hit-rate alone underesti-

mate true latencies by 14-63% in switch caches and 22-36% in CDNs.

Optimal, latency-minimal caching: Having demonstrated that

existing caching algorithms fail to minimize latency, we turn to the

design of new algorithms that are aware of delayed hits. In §3, we de-

sign a new offline caching algorithm, belatedly,
1
which computes

empirically tight bounds on the minimum latency in polynomial

time. Using belatedly, we quantify the gap between Belady’s al-

gorithm – and thus the hit-rate maximization strategy – and true

latency-optimality.We find that Belady’s latencies are 0.1-38%worse

1
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than belatedly’s latency upper-bounds for packet switches and

1.8-17% worse than belatedly for CDNs.

Low-latency online caching: We use belatedly as our guide

for the design of a practical online caching strategy, Minimum-

AggregateDelay (mad), in §4. Specifically,we derive a simple ranking

function from belatedly by modeling an object’s future ‘aggregate

delay’. This ranking function empirically approximates belatedly’s

decisions.We thendesign apractical aggregate delayheuristicwhich

can be used tomake traditional caching algorithms aware of delayed

hits. We implement a prototype of madwithin a CDN caching node.

In experiments with backends deployed in the US, Europe, and East

Asia, we observe average latency reductions of 12% to 18% with a

memory overhead of under 3%. We use simulations to explore a

wider range of scenarios and find that mad improves latencies over

traditional algorithms by 15-43% for packet switches, 10-60% for

CDNs, and 5-40% for distributed storage systems. Most strikingly,

for caches with extremely high latencies to the backing store,mad

can provide better average latencies than the latency provided by

Belady’s algorithm.

Why now? Why hasn’t anyone noticed before that delayed hits

play an important role in cache latencies? Delayed hits are noted in

passing in several places in the literature [25, 56], and anyone who

has ever implemented a cache has had to consider delayed hits as

well [1, 8, 35, 43, 53, 58].

Weconjecture that theproblemhasonly recently becomepercepti-

ble from a performance perspective due to an evolving ratio between

system throughputs and latencies. If throughput is low relative to la-

tency, it may only be possible for 1-2 requests to arrive during a fetch.

However, if throughput ishigher relative to latency,onewouldexpect

more requests during a fetch.We refer to the ratio between the object

fetch time and mean request inter-arrival time asZ , and we show in

§3.2 that asZ grows, the gap between Belady and belatedlywidens.

In recent years,Z hasgrownacross awide rangeof systems. For ex-

ample, DRAM latencies are only marginally improving, while newer

memory technologies (e.g.High BandwidthMemory, or HBM) boast

order-of-magnitude improvements in bandwidth over current DDR

standards [37]. Similarly, the latency between a CDN forward proxy

and a central data center is defined by wide-area latencies; mean-

while, throughputs are rapidly growing, e.g., with network links

moving from 10Gbps to 100Gbps and 400Gbps [24]. The fundamen-

tal problem is that latencies are edging marginally closer and closer

to limits imposed by the speed of light, while throughputs keep

growing unhindered. Hence, we believe that the impact of delayed

hits on latency-minimizing caching systems will growwith time.

2 THE PROBLEMWITHDELAYEDHITS

A basic delayed hit scenario is illustrated in Figure 1. When a

request arrives for an object and the object is not stored in the cache

1○, the cache triggers a request to retrieve this object from a back-

ing store 2○. The retrieval takes some non-zero amount of time, L
seconds, and the average inter-request arrival time is R seconds.

For simplicity we say that R seconds is one timestep, and that the

amount of time to fetch the object isZ = L
R timesteps. After the object

is requested, but before Z timesteps have occurred, a new request

arrives 3○. This request must wait some non-zero, but <Z amount

of time for the object to arrive as well 4○.

1 A request arrives for object X at
T=0, resulting in a cache miss

A B C D

The cache sends a fetch
to the backing store, which
takes Z timesteps to return

X

Cache

Backing Store

X arrives in the cache at
T=Z, and both requests are
served. The 2 requests see
latencies of Z and (Z-n),
respectively

X2

3

2
4

X1

A second request for
object X arrives at T=n,
before the fetch returns

Figure 1: Two requests for object X arrive within Z timesteps of

each other. The first request results in a miss, the second request is

a ‘delayed hit.’
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Figure 2: An exampleCDFof request latencies. Delayedhits account

for the gap between the true hit-rate (HR) and themiss-rate (MR).

To concretize this notion, consider a cache where Z = 10. At

timestepT = 3, a request for object A arrives, resulting in a cache

miss; this triggers a fetch to the backing store for objectAwhichwill

complete at timeT =13, hence the first request will be served after
a total latency of 10 timesteps. If additional requests forA arrive at

T = 5 and T = 11, then they too will complete at T = 13, and will

experience latencies of 8 and 2, respectively.
2

Traditional caching models ignore the contribution of delayed

hits, which, as we show in the following sections, can be significant

in systemswith high latency to the backing store. Figure 2 depicts the

physical interpretation of delayed hits, and the relationship between

the true hit-rate, the idealized hit-rate, and the miss-rate.

2.1 Classic Caching Algorithms

Delayed hits subvert expectations of traditional caching algo-

rithmswhen it comes to latency. A caching algorithm is an algorithm

to decide, given a cache and an incoming stream of object requests,

when and which objects to store in the cache, and when and which

objects to evict. The caching algorithm produces a cache schedule:

a series of decisions about admissions and evictions for a given

set of cache parameters and a given sequence of object requests. A

caching algorithm aims to meet a particular objective, e.g., maximiz-

ing hit-rate. Offline (‘optimal’) algorithms know of all requests in the

future, and can therefore generate a theoretically optimal schedule

with regard to the objective.Online (‘practical’) algorithms are aware

of past object requests, but not future requests.

Classical caching algorithms are designed with the objective of

maximizing hit-rate, treating ‘true’ hits and delayed hits as one cat-

egory [27, 54]. Measuring the hit-rate (HR) allows cache designers
to evaluate numerous properties one might wish to extract from

a caching algorithm. For example, if a cache is deployed to reduce

2
Note that for the purposes of ourmodeling, we assume that processing time for each re-

quest is 0– that is, as soonas thedataarrives, all requests are served instantly. Inmanysys-

tems this is not true, and each requestmust be processed serially, e.g., reading,modifying,

andwriting updates to the cached object. Non-zero processing times therefore introduce

an additional queueing delay which further increases the latency due to delayed hits.
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Figure 3: For this trace for a cache of size 2 and a Z of 3, Belady’s

algorithm chooses a latency-suboptimal schedule.

bandwidth consumption to a backing store (e.g. a forward proxy in

a bandwidth-limited network), then the miss rate,MR = (1−HR)
is proportional to the bandwidth consumption on the path to the

backing store. Other caches are deployed tominimize latency.When

assuming delayed hits do not exist (and that backing store latencies

are uniform [23, 30, 39]), the average latency is equal to:

HR×hit latency+MR×miss latency (1)

In the presence of delayed hits, the latency estimates derived from

traditional hit-rate based models underestimate true latency. Some

so-called ‘hits’ will in practice experience latencies closer to the high

latency of a miss than the low latency of a true hit. As a consequence

of this gap, traditional algorithms fail to minimize latency, which we

demonstrate in offline simulations (§2.3) and real experiments (§5).

2.2 Belady is Not Latency-Minimal

The classical Belady’s algorithm [7] is provably optimal at both

maximizing hit rates and minimizing latency in the basic setting

where all objects are the same size [10], and the backing store latency

is both uniform and less than the request inter-arrival time. The

algorithm itself is simple:when choosingwhichobject to evict froma

cache, evict the objectwhose next request is the farthest in the future.

However, Belady’s algorithm is not latencyminimalwhen delayed

hits are present, as illustrated in Figure 3. In the example, the cache

(Size =2, Z =3) currently contains objectsA and B, and a fetch for
objectC (initiatedZ =3 timesteps earlier) has just completed. Now,

the cache must evict either objectA or B to accommodateC . Since B
is accessed earlier thanA, Belady’s algorithmwould choose to evict

A. However, in our example, we see that there is a burst of requests

toA, resulting in a series of ‘delayed hits’ with several requests to
A experiencing higher latencies. A caching algorithm that evicts B
instead ofA experiences a single miss corresponding to B, but all of
the subsequent requests toAwould have been true hits, resulting

in a lower average latency.

AlgorithmDescription

LRU Recency-based heuristic. Evicts the least-recently-used item

from the cache [64].

LFU Frequency-based heuristic. Evicts the least-frequently-used

item seen since the beginning of time [20].

ARC Balances frequency and recency [41].

LHD Learns hit and lifetime distributions, evicts the object with the

lowest hit density [5].

Belady Offline-optimal algorithm for maximizing hit-rate ignoring

delayed hits [7]. Requires an oracle of future requests.

Table 1: Overview of traditional caching algorithms.

Trace Use Case Latency Z

CDN

Intra-datacenter proxy [63] 1ms 1K

Forward proxy, nearby datacenter [34] 10ms 10K

IRT=1µs Forward proxy, remote datacenter [34] 200ms 200K

Network

Single cache line DRAM lookup [27] 100ns <1

Traversing a DRAM datastructure [27] 500ns <1

RDMAAccess in GEM-switch [33] 5µs 2

IRT=3µs IDS with reverse DNS lookups [46] 200ms 67K

Storage

1MB SSD Disk Read [19] 50µs 2

Hard Disk Seek & Read [19] 3ms 100

IRT=30µs Cross Datacenter Filesystem Read [19, 62] 150ms 5K

Table 2: Average inter-request times (IRT), typical latencies, and Z
values for a range of caching use cases.
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Figure 4: Average latency estimates of Idealized (not accounting for

delayed hits) and Actual (accounting for delayed hits) versions of

two standard caching algorithms.

2.3 DelayedHits and Practical Algorithms

In addition to leading Belady to sub-optimal caching schedules,

we also observe that delayed hits can mislead operators managing

caching systems in practice. In this section, we simulate four classes

of caching systems and observe that delayed hits can inflate latencies

beyond what operators might expect from analyzing hit rates; in

fact, delayed hits might even lead operators to choose the wrong

caching algorithm to deploy for minimal latency.

Experimental Setup: We implement a cache simulator
1
which

models delayed hits for a range of caching algorithms listed in Ta-

ble 1. We rely on datasets from three classes of caching systems: a

large content distribution network [11], the CAIDA Equinix 10G

Packet dataset [59], and a networked file system at Microsoft [28].

For each trace, we simulate a set of caching scenarios, each with a

different backing store latency normalized toZ , the average number

of requests arriving during a single object fetch. To provide some

context for what Z values one might find in practical systems, we

describe a few examples in Table 2.

Delayed hits increase latencies in practice when Z is large. If

delayed hits happened infrequently, the gap between the predicted

latency derived from hit-rates (1) and true latencies would be mar-

ginal. But, in Figure 4, we show how the average latency reported by

a simulator thatmodels delayed hits differs fromone that does not. In

our simulations, we scale up the latency to the backing store; on the

X-axis we plotZ , the ratio of the backing store latency to average re-
quest inter-arrivals. We see that for both traces, as the latency to the

backing store increases (andhenceZ ), so does the difference between
the simulated latency with delayed hits and the predicted latency

assuming no delayed hits. Referring back to Table 2, this means that



latencies are noticeably worse than expected for Forward but not

Reverse proxies, and for IDS DNS lookups but not DRAM accesses.

Evaluating caching policies on hit-rate alone can lead to se-

lecting the wrong algorithm. The gap between a hit-rate derived

estimate of latency and the true latency varies by trace and by al-

gorithm. This means that comparisons of caching policies – even

using real, not simulated systems – based on hit-rate measurements

and Eq. (1) rather than true measurements of latency may lead to

incorrect conclusions about which caching algorithm is ‘better’ for

the system under consideration. Figure 5 depicts pairwise compar-

isons between four online caching algorithms applied to different

application scenarios.X s denote situations where choosing an algo-

rithm on the basis of hit-rate alone would result in a worse average

latency. We find that in more than one-third of comparisons, not

incorporating delayedhits into the systemevaluationwould leadone

to make suboptimal decisions about the ‘right’ caching algorithm,

which would lead to higher average latency in practice.

2.4 Minimizing Latency is Challenging

We have seen that optimizing for hit rate alone is insufficient to

guarantee minimal latency. So, which caching schedule minimizes

latency when there are delayed hits? Answering this question is

more challenging than one might think.

To illustrate the challenge presented by delayed hits, we present

an example where the right decision highly depends onZ . Intrigu-
ingly, we find that, as Z increases, the right schedule can change

entirely. The example consists of the following sequence of requests

to objectsA and B, which is repeated indefinitely. Requests in yellow
(indicated x ) denote empty time slots.

B A A A A A B X X B X X B X X B X X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

...repeat
foreverTime (ms)

We assume a cache of size 1 which either cachesA or B. We consider

four differentZ values corresponding to the following fetch delays

(L): 1ms , 5ms , 17ms , and 22ms (assuming R=1ms). For eachZ value,

we calculate the latency achieved by three algorithms: a) caching the

bursty flow (A), b) caching the paced flow (B), and c) LRU. A green

box denotes the lowest latency for each value ofZ .

Algorithm Z=1 Z=5 Z=17 Z=22

Cache Bursty,A 1.1ms 1.1ms 2.5ms 3.5ms

Cache Paced, B 0.9ms 0.9ms 4.4ms 3.2ms

LRU 0.3ms 1.4ms 6.9ms 6.7ms

We find that, while LRU is latency-optimal forZ =1, the paced algo-
rithm is optimal forZ =5. ForZ =17, the bursty algorithm becomes

latency-minimizing (albeit not optimal), and for Z = 22, the paced
algorithm is latency-optimal once again. The difference in latencies

is significant (between 2× and 3×) even for this simple example. We

conclude that any traditional algorithm, which ignores delayed hits

and thus considers only the sequence of requests, cannot expect to

achieve good latencies. In fact, even an educated guess, e.g. prefer-

ring bursty flows –which suffer especially under delayed hits – does

not consistently lead to the right strategy.

To further complicate matters, parallel work in our group [40]

shows that the latency objective for the delayed hits caching prob-

lem is not antimonotone.
3
Consequently, a caching algorithm that

3
For a request sequence of size T , we can encode a cache schedule as a hit vector of

boolean values, b ∈ {0, 1}T , where bi = 1 if the i ’th request experienced a true hit,

improves average latency under delayed hits might actually lower

the true hit-rate. In fact, it might even increase the miss-rate (i.e.

inflate the number of requests sent to the backing store). This finding

confirms our intuition that optimizing for latency is a fundamen-

tally different problem than optimizing for hit- or miss-rates. It also

has implications for bandwidth consumption of latency-minimizing

caching algorithms, which we discuss further in §5.4.

3 LATENCYOFFLINEOPTIMAL

Belady, the offline hit-rate maximizing caching algorithm, fails to

minimize latency in the presence of delayed hits, and neither do the

heuristic algorithms in §2.4. In this section, we find the answer to the

latency-minimization question by reducing it to a Minimum-Cost

Multi-Commodity Flow (MCMCF) problem.We present belatedly,

an offline caching algorithmwe designed to minimize latency given

delayed hits. With belatedly, we can measure the gap between

Belady and true latency-optimality. Furthermore, belatedly

generates a latency-optimal cache schedule which we will later use

to guide the design of a practical, online algorithm (mad).

A latency-minimizing cache scheduleminimizes themean latency

ofall requests,where latency=0upona truecachehit, latency∈ (0,Z )
upon a delayed hit, and latency=Z upon a miss. In §3.1, we show

that the latency-minimization problem is equivalent to an MCMCF

problem.

However, computing integer solutions to MCMCF problems is

known to be NP-Complete, and naively implementing the algorithm

involves a significant number of decision variables. To make the

problem tractable enough to compute over our empirical datasets,

we apply two optimizations: (1) we ‘prune’ and ‘merge’ states in the

MCMCF graph using a priori insights about caching, and (2) we con-

figure our MCMCF solver (Gurobi [45]) to solve for a ‘fractional’ so-

lution,which can be found in polynomial time, and then perform ran-

domized integer rounding [10, 50] to recoveravalid caching schedule.

Due to space limitations, we defer the details of these optimizations

to Appendix §A.3, and summarize their impact on belatedly’s per-

formance in §A.4. The belatedly pipeline is illustrated in Figure 6.

3.1 Network Flow Formulation

We first describe our MCMCF formulation. Due to space limi-

tations, some formal definitions are deferred to §A.1; we provide

a proof of equivalence between latency minimizing caching and

belatedly in §A.2.

Overview: MCMCF is a classic network flowproblem and a general-

ization of Min-Cost Flow (MCF) [2]. Min-Cost Flow involves a set of

sources and sinks embedded in a larger graph; every edge in the graph

has a capacity representing the maximum amount of flow which

may traverse that edge. A solution to MCF must route flow from the

sources to the sinks without exceeding any individual edge capacity.

Furthermore, each edge is also associated with a cost. The ultimate

goal of Min-Cost Flow is to route flow across the edges such that the

total cost of all traversed edges is minimized. MCMCF adds an addi-

tional twist to the problem: flows are associated with a commodity,

and edges may have different costs for different commodities.

and bi =0 otherwise (i.e. delayed hit, or miss). Then, we can define a latency function,

l : {0,1}T −→R, such that l (b) represents the total latency for schedule b . We say that l
is antimonotone if, for every pair of schedulesb,b′ ∈ {0,1}T , whereb′i ≥bi∀i , it holds
that l (b′) ≤ l (b). Perhaps surprisingly, [40] shows that this is not the case, implying

that it is sometimes preferable to forgo a true cache hit in order to achieve lower latency.
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Figure 5: Pairwise comparisons between online policies.
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Figure 6: The belatedly pipeline for computing bounds on

latency-optimal cache schedule usingMCMCF reduction.

Our reduction from minimum latency caching to MCMCF con-

structs a commodity for each object requested from the cache. Ver-

tices in the graph represent either that the object is in the cache, or

that it is in thebacking store; edges betweenvertices represent theob-

ject entering the cache, remaining in the cache, or being evicted from

the cache. Weights along edges represent the latency cost of misses

and delayed hits. By minimizing the weights of traversed edges,

MCMCF equivalently computes a cache schedule with a minimal

latency cost.

Akey component in this formulation is the costsweassign to edges

in the flow network, which reflect the true latency costs of misses.

Our main finding is that the right costs to assign are ‘aggregate de-

lays’. Specifically, the aggregate delay of a miss is the total delay of

themiss andall thedelayedhitswithina timewindowofZ of themiss

(see Eq. (2) for the mathematical definition). This notion of aggregate

delay influences the design of our online algorithms, discussed in §4.

ConstructionoftheFlowNetwork: belatedlyoperatesonaflow

network, a directed graph consisting of a set of vertices and edges. In

our formulation, the vertex set,V , consists of two types of vertices,
which we draw as two rows. The bottom and top rows represent

the backing store and the cache, respectively. We refer to the set of

‘backing store’ nodes asVmem , and the set of ‘cache’ nodes asVcch .

Cache
Vcch

Backing Store
Vmem

Note that the rows are slightly offset. This is because we index each

row by time, and have vertices for each timestep. For the bottom

row, we have one vertex for each timestep T = 0,1, ... ,N − 1. We

denote these vertices asVmem,T ,T =0,1,...,N −1. For the top row, we

duplicate the vertices in the bottom row, but shift them to the right

byZ timesteps as shown in the figure below. We denote the vertices

in the top row byV
cch,T ,T =Z ,1+Z ,...,N −1+Z . In the figure below,

Z =2.
Flowmoving along an edge represents an object moving in and

out of the cache. In the following figure, an object is requested at

timeT =0, arrives in cache at timeT =2, and is evicted at timeT =3.

Vmem,0 Vmem,2 Vmem,3 Vmem,4

Vcch,2 Vcch,3

T=0 T=1 T=2 T=3 T=4 T=5 T=6

Vcch,4 Vcch,5 Vcch,6

Vmem,1 Vmem,2 Vmem,3 Vmem,4

Since there are multiple objects, we view each object as a com-

modity and index them by i ∈ [M], whereM is the number of objects

and [M] = {1,2,...,M}. We also say σ (x) is the object requested at
time x . We have 1 unit of demand for each object. The source vertex

for each object, i , is the vertexVmem,Ti whereTi is the first timestep

at which i is requested. We also add a sink vertex for each object i

in the bottom row, denoted byV
(i)
sink

.

At a high level, each node in the bottom layer represents the time

of request to exactly one object; we construct an edge fromVmem,t to
V
cch,t+Z to allow the flow for that object to move from the backing

store to the cache. In the top layer, each nodeV
cch,t+Z represents the

request from time t being served. Objects may stay in the cache by

following edges from someV
cch,n to the nextV

cch,n+1 – all nodes in

V
cch, have an edge to the subsequent cache node. To leave the cache,

an object follows an edge from someV
cch,n to someVmem,x forx , the

next time (≥n) the same object is requested – hence all nodes inV
cch,

haveM edges back toVmem, nodes, one for each object that could be

evicted at this point. If there is no further request to an object, the

edge points to the sink node for that object rather thanVmem,x . We

illustrate the request sequence {A, B,A,A, B} for objectsA and B:

Sources
Sinks

A B A A B

A B A A B

A B

T=0 T=1 T=2 T=3 T=4 T=5 T=6

Looking at the above figure, it is obvious that some edges will never

be taken (e.g.V
cch,2 has an edge toVmem,4 despite the fact that it is

impossible for flow for object B to have reachedV
cch,2. We discuss

pruning superfluous edges and merging nodes to improve perfor-

mance in §A.3.

The last features to add to our construction are capacities and costs

along edges to ensure that each object’s flow obeys a valid caching

schedule that minimizes latency. For example, we want to prevent

all objects simply following the edges (V
cch,n ,Vcch,n+1) for the entire

duration and exceeding the cache capacity. No more than capacity

flows may traverse an edge, and our solver will try to minimize the

total cost of routing flow across these edges. We assign capacity and

cost to edges as follows:



• (V
cch,n ,Vcch,n+1) edges (which represent staying in the cache) are

assigned capacityC , and the cost of routing flow across them is 0.

This models the fact that staying in the cache does not increase

latency, but the cache can only holdC objects at the same time.

• (V
cch,n ,Vmem,x ) edges (which represent evicting an object whose

next request is atT = x) are assigned capacity 1, and the cost is
∞ for all commodities except σ (x) (the object requested at time

x ), for which the cost is 0. This prevents objects from exiting the

cache along edges for a different object. Intuitively, the action

of eviction itself does not incur a latency cost. But it forces the

object out of the cache so the next request for the object and the

corresponding delayed hits will experience non-zero latencies.

• (Vmem,T ,Vcch,T+Z ) are the edges that represent bringing an object
into the cache, which happens when there is a miss. It is here

that we encode delayed hit latency into the cost. The capacity

of (Vmem,T ,Vcch,T+Z ) is 1, and the cost is∞ for all objects other

than σ (T ). The cost of routing σ (T ) along (Vmem,T ,Vcch,T+Z ) is
the aggregate delay for requests of object σ (T )while the data is
being fetched; i.e., it is the total latency for the miss plus all re-

quests that arrive during the delayed hits. The miss experiences

a latency ofZ , and a delayed hit that arrives t timesteps after the

miss experiences a latency ofZ−t . Therefore, the cost is:

Z+
Z−1∑
t=1
1{σ (T+t )=σ (T )} ·(Z−t). (2)

A

T=0

cost =
 2

All other edges (not shown) have cost = 0

B A A B

A B A A B

A B

cost =
 2

cost =
 3

cost =
 2

cost =
 2

T=1 T=2 T=3 T=4 T=5 T=6

In the above figure, the cost for all edges is 2 (the latency Z to the

backing store) except for the edge (Vmem,2,Vcch,4). BecauseA is also

requested atT =3, it will be queued and later served by the request
being fetched; as such,weneed to account for both the cost of serving

the request atT =4 (which is 2) and the request atT =3 (which is 1).

Routing Flows: The MCMCF problem is to find routes for the ob-

jects such that the total routing cost is minimized. Specifically, the

routes are represented by flow variables, where each flow variable

represents whether an object/commodity is routed along an edge or

not. Here flow variables need to satisfy link capacity constraints and

flow conservation constraints, which will guarantee that the flow

variables can be converted to a valid cache schedule.

Equivalence to Latency-Minimizing Caching:

Theorem 1. belatedly’s underlying MCMCF problem (§A.2) is

equivalent to the latency minimization problem (§A.1).

The detailed proof of Theorem 1 can be found in §A.2. Both the

MCMCF problem and the latency minimization problems are op-

timization problems. To show that these are equivalent,
4
we first

4
At this juncture, one might ask: why bother with MCMCF instead of solving the

latency minimization ILP directly? The answer is three-fold. First, the LP is convoluted

and quite unintuitive (in fact, we discovered the MCMCF formulation first!). Second,

it is the network flow formulation that allows us to implement the optimizations

described in §A.3; without these, even modest LP instances of the problem are too

compute- or memory-intensive for today’s solvers. Finally, formulating the problem
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application scenarios (Network, CDN, Storage) today. Top to bottom:

1%, 5%, and 10% cache sizes.
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edly versus z. Cache size, c =5%.

show in Lemma 1 that the feasible set of flowvariables is “equivalent”

to the feasible set of caching schedules (i.e. from any feasible cache

schedule, we can define a set of flow variables that are also feasible

for the MCMCF problem, and vice versa).

Lemma 1. Given a sequence of object requests, there is a bijection

between the set of feasible flow variables and the set of feasible cache

schedules.

Once we have this bijection, we can show that the objective func-

tions of these two problems are the same.With equivalent feasible

sets and objective functions, the MCMCF problem and the latency

minimization problem are thus equivalent.

3.2 DelayedHits and Empirical Latencies

Wenow evaluate belatedly’s latency estimates relative to Belady

for a range of application scenarios.

belatedly provides significantly better average latency

than Belady for today’s highest-latency systems. In Figure 7,

we plot Belady’s percent error relative to the optimal upper-bound

provided by belatedly.
5
For the highest latencies – referring to

Table 2, those withZ values in the thousands – Belady deviates from

the optimal by 9-37%. However, for more modest latencies to the

backing store, belatedly does not have noticeably lower latencies

than Belady. Even in the original FPGA-based switching scenario

which caused us to detect delayed hits, the gap between Belady and

belatedly is less than 1%.

as anMCMCF naturally leads to the notion of aggregate delay; as we show in §4, this

is a key component of our online algorithm.

5 (Belady−belatedly)

belatedly
×100%
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edly versus cache size (expressed as a percentage of the maximum

number of concurrent flows). Using Z =500.

Z is correlated with an increasing gap between Belady and

belatedly. In Figure 8 we see that for all three datasets, Belady

performs progressivelyworsewith respect to true latency optimality

as Z increases – until Z moves past 10K . The growth correlation

follows intuition: as Z grows, there are more chances for delayed

hits to occur, and hencemore opportunities for Belady to err.We find

that narrowing of the gap between Belady and belatedly beyond

Z = 10K is an artifact of our simulation duration; since Z is large

relative to the size of the trace (250K requests), it also exceeds the

duration ofmost flows. As a result, most requests experience ‘forced’

cache misses, raising the latency baseline and giving belatedly

fewer opportunities to make meaningful caching decisions.

The gap between Belady and belatedly varies with cache

size. In Figure 9, we see that the latency difference first rises, then

falls as the cache size increases. When the cache is extremely small,

neither belatedly nor Belady’s caching decisions have significant

impact on latency (since most requests experience cache misses, the

average latency is close to the full latency of a cache miss); similarly,

as the cache capacity becomes very large, both strategies can afford

to simply cache all or almost all objects (the extreme case being a

cache large enough to fit all concurrent flows or active objects). In

between, however, all three datasets ‘peak’ at different points. In

particular, the Network trace has a sharp spike at 10%, while the

CDN and Storage traces have more gradual curves.

belatedly’scachingdecisionsarecorrelatedwiththebursti-

ness of requests. The Goh-Barabasi Score [26] is a statistical mea-

sure of ‘burstiness’ in a sequence of events. A score of ‘1’ reflects

many arrivals in a short period of time (a ‘train’) followed by longer

periods with no requests. A score of ‘-1’ represents a perfectly paced

stream of arrivals with one request every fixed number of timesteps.

In Figure 10, we see that bursty traffic (with a high Goh-Barabasi

score) incurs a lower percent latency relative toBelady. This suggests

that burstiness may be a worthwhile candidate for consideration

in the design of online algorithms that optimize for latency in the

context of delayed hits. It is this observation that guides us in the

development of our online strategy, and we discuss it in more detail

in the following section.

4 APPROXIMATING BELATEDLY

belatedly provides two principal lessons for the design of im-

proved low-latency caching algorithms. First, belatedly demon-

strates that the opportunity for latency improvement is high: the

gap between latency-optimal and hit-rate optimal can be as much

as 45%. Second, belatedly provides us with a caching schedule that

achieves optimal latency for a given trace andZ value.

Figure 10: Relative latency improvement vs burstiness (forNetwork

traffic). Bursty flows suffer less under belatedly.

Unfortunately,belatedly is slow–takingup to8hours tocompute

an optimal schedule for a trace with 250,000 requests – and requires

knowledgeof the future. Bothof thesepropertiesmean thatbelatedly

itself cannot serve as a caching algorithm for practical systems.

In this section, we learn from belatedly’s optimal schedule how

to achieve better latencies in practical implementations. In §4.1 we

first explore heuristics in the offline setting. In this setting, we still

assume an oracle with perfect knowledge of future requests, but

we target a computationally tractable algorithm. In §4.2 we then

move to a fully online setting where the algorithm both needs to be

efficient and operate without knowledge of future requests.

4.1 Offline Approximations: Belady-AD

We seek a heuristic ranking functionwhich quickly tells us the pri-

ority of an object for our goal tominimize latency. In practice, almost

all caching algorithms use some ranking function, e.g., LRU – an

online algorithm – prioritizes objects by how recently they were last

used. Belady – an offline algorithm – is the inverse and ranks objects

by how soon they will be used in the future. These ranking functions

prioritize hit rate whereas we seek a ranking that minimizes latency.

To derive a ranking function, we look to belatedly. While we

cannot simply emulate belatedly’s behavior (unfortunately, flow

algorithms likebelatedlydon’t revealhow theymakedecisions),we

can search for easilymeasurablemetrics correlatedwithbelatedly’s

caching decisions. As we discussed in §3.2, belatedly prioritizes

caching bursty objects, i.e. those objects with a high Goh-Barabasi

score [26]. We experimented with ranking functions based on this

score.While these functions had excellent runtime performance (the

Goh-Barabasi score is a function ofmean andvariance, both ofwhich

can be measured cheaply with online algorithms), they delivered

poor latency results. Therefore, burstiness on its own is not a good

ranking function, which confirms the intuition we derived in §2.4

Instead, we turn to another metric that is directly associated with

the latency cost of bursty flows: aggregate delay, which is computed

in Eq. (2). To compute the rank of an object, we assume that the ob-

ject’s next access in the future is amiss. Its aggregate delay is the sum

of the delay due to themiss and any delayed hits which occur during

the nextZ timesteps while the object would be fetched. Intuitively,

an object with a higher delay cost – with a burst of requests during

thatZ window – increases average latencymore than an object with

a lower delay cost, and hence should be prioritized.

Nevertheless, aggregate delay by itself is still not an effective

ranking function. Consider the ranking of two objectsA and B in a

cachewhereZ =3as shown inFigure11.Ahasanaggregatedelayof 6

andwill not be accessed for another 100 timesteps.B has anaggregate
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Cache A 
A's Aggregate Delay: 6

Cache B 

Z=3

B's Aggregate Delay: 5

10 timesteps 90 timesteps to serve other objects

?

100 timesteps

B

A A A

Figure 11: Ranking objects solely based on aggregate delaymay lead

to poor utilization of cache space.

delay of 5 andwill be accessed only 10 timesteps in the future. Should

the rank function preferAorB?Assumingwe keep the cached object

until its next access, keepingAutilizes one cache line –which cannot

be used for other objects – for a very long interval. On average, each

timestep we keepA in the cache will ‘save’ an average of
6

100
units of

delay. On the other hand, for each timestep we keep B in the cache,

we save an average of
5

10
units of delay, with the opportunity to

cache other objects in the remaining 90 timesteps. Hence, B appears

to be – on average – a more efficient use of cache space.
6

Following this intuition, our offline ranking function, belady-ad,

computes two values for each object.AддDelay(x) is the aggregate
delay for the next access to object x , andTTNA(x) is the number of

timesteps until the next access to x .7 The rank is then:

Rank(x)=
AддDelay(x)

TTNA(x)
(3)

We find that, across allZ values, the average request latency pro-

vided by belady-ad is within 0.1-12% of belatedly. In Figure 12, we

show the average latency for belady-ad and belatedly (normalized

against the performance of Belady’s algorithm) for a range ofZ val-

ues for the CAIDA Chicago network trace; belady-ad closely trails

belatedly, although the gap between the two widens asZ grows.

Furthermore, belady-ad runs several orders of magnitude faster

than belatedly, computing a cache schedule in under 3 seconds for

a trace containing 250,000 requests, where belatedlywould take

up to 8 hours.

4.2 Online Algorithm:mad

Finally, we turn to the true online setting, where we both need

to use simple heuristics to rank objects and do not have knowledge

of the future. Fortunately, we can use the past to make predictions

about the future. Just as LRU uses recency as a ranking function –

the ‘inverse’ of Belady’s algorithm – we need to ‘flip’ our measures

ofAддDelay(x) andTTNA(x) to use data from past requests rather

than future ones.

6
This intuition does not necessarily lead to optimal decisions! For example, if we were

to prefer B and evict A, but in the 90 timesteps after B no other requests arrived then

it would have been better to prefer A.

7
Note that Belady’s algorithm uses the ranking function

1

TTNA(x ) alone.
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Figure 12: belady-ad closely trails belatedly.

Luckily,wealreadyhavea large literatureofestimators forTTNA(x),
as almost all algorithmsareessentiallypredictorsof thenext access to

an object. Recall that Belady’s algorithm ranks objects byTTNA(x)
alone, and is optimal in the absence of delayed hits. Hit-rate optimiz-

ing algorithms aim to operate as close to Belady as possible [55], and

so the closer their ranking function is to
1

TT NA(x ) , the better they

perform. Hence, in §5we experiment with using LRU [64], ARC [41],

and LHD [5] as estimators ofTTNA(x).
This leaves us with estimatingAддDelay(x). Recall that we mea-

sure Aggregate Delay by assuming that the next request to object x
will be a miss, and computing the sum of delays for the miss to x and

any subsequent delayed hits for x . We ‘flip’ this by assuming that

all past requests to x were misses and then calculating the average

aggregate delay per miss; we illustrate this in Algorithm 1.We find

that this approximates the trueAддDelay(x)well, e.g.with a Pearson
Correlation Coefficient of 0.7 for the network trace.

Finally, to create mad, we combine the code
8
from Algorithm 1

with a known estimator forTTNA(x).We can now compute the rank

using Eq. (3).

Algorithm 1 Estimating AggregateDelay

1: structObjectMetadata

2: NumWindows = 0

3: CumulativeDelay = 0

4: WindowStartIdx = −∞

5:

6: function EstimateAggregateDelay(X:ObjectMetadata)

7: return
X.CumulativeDelay

X.NumWindows

8: end function

9:

10: functionOnAccess(TimeIdx, X:ObjectMetadata)

11: // Time since start of the previous miss window

12: TSSW = (TimeIdx - X.WindowStartIdx)

13:

14: if TSSW ≥ Z then

15: // This access commences a newmiss window

16: X.NumWindows += 1

17: X.CumulativeDelay += Z

18: X.WindowStartIdx = TimeIdx

19: else

20: // This access is part of the previous miss window

21: X.CumulativeDelay += (Z - TSSW)

22: end if

23: end function

We note that parallel work [40] in our group has shown that any

deterministic online algorithm for the delayed hits problem has a

competitive ratio
9
of Ω(kZ ), wherek is the size of the cache. Despite

falling in that category, our empirical evaluations show that mad

yields considerable latency improvements over traditional caching

algorithms, and its simplicity lends itself well to implementation.We

leave to future work to find a randomized caching strategy which

improves uponmad’s worst-case performance.

8
For the sake of brevity, the provided pseudocode assumes discrete timesteps and prior

knowledge of Z . Both of these assumptions are easily dispensable.

9
The competitive ratio of an online algorithm, α , is the worst-case ratio between the

costs of the solution computed by α to that of the optimal, offline solution for the same

problem instance. Knowledge of a caching algorithm’s competitive ratio allows us to

impose bounds on its worst-case performance (i.e. for themost pessimal workload) [57].



5 EVALUATION

We evaluate the effectiveness and the overhead of mad in a CDN

caching system. We then use our simulator from §2.3 to explore a

wider range of applications and parameters.

5.1 Experimental setup

Prototype.We emulate a CDN deployment with clients and back-

ends in geographically different locations. For rapid prototyping, we

implement our own asynchronous caching system in 1500 lines of

C++ code, using Boost.ASIO [4, 52]. Our architecture uses sharding

and a single thread per cache shard [5, 12, 22]. An overview of the

system architecture is depicted in Figure 13.
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Figure 13: Architecture of our experimental prototype.

The client sends requests as 16B object IDs to the Load Balancer,

which forwards it to the Cache Shard corresponding to the object ID.

The shard’s thread performs a cache look-up. If the object is cached,

the request is resolved immediately by relaying a response back to

the client (a true hit). Else, the request is forwarded to the Flow Man-

ager, which maintains queues of outstanding requests separately

for each unique object ID.
10

On receiving a request, if the object ID

is not mapped to an existing queue, the Flow Manager allocates a

new queue for the object and forwards the request to theNetwork

Manager (amiss). Else, the request is simply inserted at the tail of the

queue (a delayed hit). The NetworkManager use a pool of threads

with long-running TCP connections to the backing stores. These

threads perform the actual fetch operation and relay the response to

the FlowManager. The FlowManager buffers the response, flushes

the request queue for the corresponding object ID, and issues a write

request to the appropriate cache shard. The cache is updated (based

on the specified caching policy), and the responses are sent to resolve

all queued client requests.

To achieve low latency and high concurrency, the system compo-

nents communicate using lock-free, single-producer single-consu-

merqueues. The system is capable of sustaining a throughput of 1.2M

requests/sec using 12 threads on an x86 server with 16GB of DRAM.

Cacheconfigurationandpolicies.Weusea64-wayset-associative

cache, with the total cache size set to 5% of the maximum number of

active concurrent objects (e.g, 67k cache entries overall for the CDN

trace from§2.3). For the purpose of our experiments,wefix the object

size to 1KB. We implement two policies: LRU, and LRU-mad, which

combines LRU’sTTNA(x) estimator and ourAддDelay(x) estimator.

Traces.We use a busy period from the CDN trace from §2.3 which

contains 243M requests, 7.7M unique object IDs, amaximum of 1.3M

active concurrent objects, and an average inter-request time of 1 µs.

Setup.To emulate differentZ values,we set up backing stores (using

GCP VMs) in three different locations around the world: The U.S.

West Coast (Los Angeles), Western Europe (the Netherlands), and

10
We use separate request queues to avoid head-of-line blocking.
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Figure 14: Prototype results for different origin locations.
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Figure 15: CDF of latencies in simulation versus real experiments.

East Asia (Singapore). For simplicity, we refer to these as Origin A,

with an RTT of 68ms (Z =68k), Origin B, with an RTT of 103ms (Z =
103k), andOrigin C, with an RTT of 226ms (Z =226k), respectively.11

We deploy our CDN caching node on a server at CMU in Pittsburgh.

5.2 Prototype Evaluation on CDNTrace

What latency improvements does LRU-mad provide for our

wide area cache? To answer this question, we consider each of the

three backing stores independently, andmeasure the average request

latency provided by the two caching policies for the given workload.

Figure 14 shows the average latencies achieved using LRU-mad ver-

sus LRU. Overall, using LRU-mad, we see a 12.4%, 14.7%, and 18.3%

reduction in average latency for Origins A, B, and C, respectively.

As expected, LRU-mad’s benefit increases withZ .

Does the mad caching strategy still work if multiple, non-

uniform backing store latencies
12

are involved? This differs

significantly fromour offline formulationwhich only considered uni-

form latencies (i.e., a singleZ value). We find thatmad indeed works

well in themulti-backendscenario. Figure14 showsa16.8%reduction

in average latency for this case. This result suggests thatmaintaining

per-object estimates of the backing store latency (instead of a single,

global average) is an important feature of the online strategy, since

it givesmad a higher degree of freedom in computing ranks.

What are the overheads of usingmad?We discuss two kinds of

overheads associated with mad: memory and request latency. We

evaluate the memory overhead of two different implementations

of mad. Both implementations maintain 4 counters per object. Our

strawman implementation faithfully implements mad by persisting

these counters for both cached and uncached objects. However, in

a long-running caching system, this would require an unbounded

amount of memory. Our efficient implementation only stores the

11
We remark that, although the backing store latencies are known a priori, we do

not explicitly provide this information tomad; instead,mad automatically computes

per-object estimates of backing store latencies at run-time.

12
Wemap each object ID to a randomly-generated origin location, which places a third

of object IDs on each origin server. The distribution of requests is: 29% to Origin A, 39%

to Origin B, and 32% to Origin C.



counters for currently cached objects. Fortunately, we find that the

average latency provided by the efficient implementation never di-

verges from the strawman by more than 6% over the entire range of

Z values, across all traces. In fact, all results presented so far have

been using the efficient implementation. Our counters are 8B; so,

the overall overhead is 32B per cached object, which is comparable

to existing key value stores [22]. Our efficient implementation thus

has a memory overhead of just over 3% for small 1KB objects and

under 0.003% for objects in the MB range (e.g., video caching [42]).

We compare mad’s request latency to LRU, where eviction is a

constant-time operation (the entry to evict is always at the head

of a linked list). Evictions in mad require computing the rank(X)

function from §4.2 over all objects in the corresponding cache set.

While each computation is cheap, its complexity scales linearly with

the set-associativity of the cache in our naive implementation. This

leads to several microseconds of overhead, which is orders of magni-

tude lower than the latency of the backing store.We remark that this

small overhead can be further reduced using existing techniques.
13

Howaccurately doour simulations reflect results in thewide

area?We use simulated results in §2.3 and in the following evalua-

tion sections. While our simulator models the effects of delayed hits,

itmakes several simplifications. For example, it assumes that arrivals

neatly fall intodiscrete time slots, that cachemanagementoperations

are instantaneous, and that network latencies are deterministic. We

validate these simulation results by comparing the latency distribu-

tion (CDF) measured with our prototype to simulations based on

averaged estimates ofZ for Origin B (results for other origins are the

same). Figure 15 shows that the simulated latencies indeed closely

match the empirical measurements.

5.3 Simulation Results: Systems

Our prototype experiments focus on the CDN setting with a small

set of backing latencies and a single algorithm.We now return to our

delayed hits aware simulator to test threemad variants (LRU-mad,

LHD-mad, and ARC-mad) in the context of CDNs, network traces,

and storage traces.

How does mad help CDNs with other base algorithms and a

wider range of latencies? Figure 16 illustrates the performance

gains from combiningAддDelay(x)with LRU, LHD, andARC. The y-
axismeasures therelative improvement in latencybetweenLRU-mad

and LRU, LHD-mad and LHD, and ARC-mad and ARC. mad always

performs better than the baseline algorithm, suggesting that there is

no downside, from a latency minimization perspective, to adopting

mad– regardless of what ranking algorithm was used initially. As

with our LRU prototype, we see gains of 5-20% when latencies are

in the 10’s of milliseconds.

We also see that asZ reaches some extreme values – 1M or even

10M – the gains from mad increase dramatically. Today, these exam-

ples are only useful for an imaginary web user with a CDN cache on

the moon. However, theymay serve as an estimate for the impact of

delayed hits on future workloads. Recall thatZ does not represent

latency itself, but the ratio between latency to the backing store and

request inter-arrival time (§2). Hence, as link and request rates grow

by 10×, aZ value of 1Mwould only represent a 100ms latency for the

CDN. Nonetheless, these extreme values remain flawed estimators –

13
Large-scale production systems achieve constant-time evictions using sampling

techniques [5], which can be immediately applied to an implementation of mad.
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Figure 16: mad simulations for the CDNTrace.
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Figure 17: mad simulations for the Network Trace.
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Figure 18: mad simulations for the Storage Trace.

we expect that request arrival rates, their burstiness, and the number

of requested objects may all change in this time; these datapoints

are hence little more than an educated guess towards the future.

Canmadhelpnetworkswitchcaches?Asdiscussed in§1,wefirst

observeddelayedhits in aprogrammable switch.Hence,wewere sur-

prised to see the lowest gains with regard to practical caching scenar-

ios (recall Table 2). The 100ns DRAM latency we worried about had

aZ <1 given our 10Gbps network trace and our simulation suggests

essentially no performance gains for this scenario from usingmad.

The only application where we would expect to see any gains is an

IDSwith a reverse-DNS lookup, whichwewould expect to run in the

10s or 100s ofmilliseconds; the simulationhere predicts latencygains

of 10-35%. Nonetheless, most IDSes which perform such lookups are

not inline, and hence we would not expect to see these latency gains

passed on to Internet users whose traffic is intercepted by the IDS.

Looking to the future and very highZ values, we see a tapering

off trendwhichwe do not observe in the CDN scenario. As discussed

in our belatedly results, this tapering off in the network setting is

due to flows beginning and ending during the entireZ window; we

do not see this trend in the CDNor storage scenarios because objects

are much longer lived than a fewmilliseconds or even seconds. The

simulations are hence flawed for network traffic in this regard – in

practice, a switch would ‘hold’ the first SYN packet until its flow

context were fetched and subsequent packets would not arrive at

the switch until the SYN completed. We leave to future work a more



10 1 100 101

Cache Size%

0

10

20

30

40

50

%
La

te
n
cy

 I
m

p
ro

v
e
m

e
n
t

R
e
la

ti
v
e
 t

o
 B

a
se

lin
e Trace

Network

CDN

Storage

Online Game

Figure 19: Relative latency difference between LRU-mad and LRU

as a function of the cache size. Using Z =100K .

accuratemodel of network trafficandZ valueswhere the arrival time

of packets is dependent on the time it takes to serve the first packet.

Can mad help distributed storage? Our storage trace has simi-

lar results to the CDN result; we see that in the millisecond range

we achieve gains between 3-30% from adoptingmad, representing

improvements for wide-area or cross-datacenter storage systems.

However, when deployed intra-datacenter where network latencies

are in themicroseconds and system latencies in the lowmilliseconds,

we would expect much more minimal gains of zero to a few percent.

Summary.Overall, our experiments suggest that the systems that

would benefit most from mad toady are CDNs and distributed stor-

age systems with high latencies to the backing store. While switch

workloads tend to be more bursty (resulting in higher gains for mad

even at relatively lowZ values), few scenarios involve this latency

being passed on to end-users.

We note that there are several interesting properties of real sys-

tems that are not captured here. For instance, whilemadmay only

shave off a fewms worth of latency on each individual request, some

tasks, such as loadingwebpages, involve chains of serialized requests

(e.g. due to recursive dependencies in HTML or CSS elements [44]);

consequently, the overall impact (e.g.onpage load time)maybemore

significant. Similarly, fetching large objects from the backing store

may require multiple RTTs, exacerbating the effect of delayed hits.

Additionally, certain objectsmust be periodically purged from the

cache due to TTL expiration (e.g. cached DNS entries), introducing

an additional layer of complexity in the design of online algorithms.

We leave amore detailed investigation of these effects to futurework.

5.4 Simulation Results: Analysis

Wenowpresent findings that are not tied to any particular system.

Impact of cache sizing:Weevaluate how cache size impactsmad’s

improvements over traditional caching algorithms. Recall that we

measure thecachesizeasa fractionof thepeaknumberofconcurrently-

active objects.
14

We calculate the latency improvement of mad rel-

ative to LRU for all four scenarios while keepingZ fixed atZ =100k .
Figure 19 shows the results for cache sizes between 0.1% and 10%.

We find that mad’s improvement is around 20% for small caches

(<1%) in the CDN and online gaming scenarios. In the networking

scenario,mad’s improvement is between 20% and 43% (we fixZ to

demonstrate the effect of cache sizing, but we note that the chosen

value is higher than one would expect to see in a networked setting).

14
Note that our cache size definition is motivated by networking applications where

flow state only needs to be tracked for ’active’ flows. Caching papers on CDNs

and storage systems typically express the cache size as a fraction of the working

set [5, 12, 41], which is orders of magnitude larger. The cache size numbers shown in our

graphs thus might look comparably large but they are based on a different denominator.

Figure 20: Like belatedly,mad prioritizes bursty objects.
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Figure 21: Percent relative change in miss-rate between mad and

various baseline caching algorithms forNetwork, CDN, and Storage.

Finally, we see that mad’s improvement is highest in the storage

scenario, with a 26% to 50% lower latency than LRU.

mad prioritizes bursty objects, just like belatedly. We de-

scribed the intuition behind mad as prioritizing bursty objects, just

like belatedly. Nonetheless, we use aggregate delay rather than

true burstiness (Goh-Barabasi score) and we weigh aggregate delay

against time to next access. Hence it is worth asking – does our

intuition about burstiness indeed map on to why mad is doing well?

Figure 20 shows per-object latency gain (or loss) between LRU and

LRU-mad’s caching schedule for the Network trace. Much like Fig-

ure 10 illustrating belatedly’s correlation with burstiness, mad

prioritizes bursty objects as well.

Impactoncachemiss-rate.Asdescribed in§2.4, latency-minimizing

algorithms might in fact increase the overall miss-rate. Hence, we

quantify the impact of mad – an algorithm designed to minimize

latency – on the overall cache miss-rate (which in turn affects the

bandwidth consumption on the link to the backing store). Figure 21

depicts the relative change in miss-rates
15

between mad and our

three baseline algorithms as a function of Z . Regions where mad
increases the miss-rate (i.e. performs worse than the baseline) are

highlighted in red. We find that, across all Z values and choice of

baseline algorithms,mad increases miss-rates by at most 10%
16

for

the Network and Storage settings (+1.84% and +1.43% on average),

but almost always reduces miss-rates in the CDN setting (−1.89% on

average). We conclude that, depending on the workload, there is a

tradeoff between optimizing for latency and bandwidth.

15
MR

(mad)
−MR

(Baseline)

MR
(Baseline)

×100%

16
Note that this value represents a relative increase in miss-rate compared to the

baseline. In our experiments, the absolute difference in miss-rates never exceeds 1%.
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Figure 22: At extremely high latencies, mad outperforms Belady’s

algorithm forCDN.

mad can out-perform Belady’s algorithm. We were surprised

to notice that mad can out-perform Belady’s algorithm. Figure 22

illustrates LRU-mad, LHD-mad, and ARC-mad in the CDN setting,

nownormalized to the latency achieved byBelady’s algorithm rather

than their baseline online algorithms.

6 LIMITATIONS ANDOPENQUESTIONS

This paper opens up a broad range of theoretical and practical

questions and we are only able to answer some of them.

Our model of caches (§2.2) is very simple and there are many at-

tributes of practical systems that it does not capture; richer andmore

complex scenarios hence merit additional investigation in both the

online and offline setting. For example, our theoretical model does

not account for variable backing store latency (although our eval-

uation does measure this setting), nor does it account for differing

object sizes.Bothour theoryandsimulator assume that, once thedata

fetch delay has passed, all outstanding delayed hits are immediately

processed and released, althoughmany systemsmay instead operate

over each response sequentially leading to additional queuing at the

cache. Finally, in the online setting, prefetching algorithmsmay also

merit a second look with respect to latency and delayed hits.

Another nagging concern of ours is thatwe have have yet to prove

the hardness of the delayed hits optimization problem.While all in-

dicators point towards a hard problem, a formal proof remains open.

Finally, while the online algorithmwe propose in this paper seems

to performwell empirically, we now know that it has a poor compet-

itive ratio [40]. Consequently, we don’t expect mad to be the final

word on latency-minimizing caching in the presence of delayed hits;

indeed, we believe randomized algorithms will yield better results.

7 RELATEDWORK

Cachingalgorithmshave receiveda significant amountof research

attention, but the aspect of delayed hits is largely disregarded in the

literature.Wearenotawareofanypriorworkproposingananalytical

model for thedelayedhitsproblem,ordesigningalgorithms targeting

delayed hits. Most existing caching algorithms focus on maximizing

hit ratios, with significant advances in recent work [5, 12, 13, 29, 38,

55] andexcellent surveysof olderwork [48, 60]. There are twogroups

of prior work that look at maximizing metrics other than hit ratios.

(1) Cost-aware online caching algorithms. This group of algo-

rithms [15, 30–32, 36, 65, 66] seeks to minimize the average cost

of misses, where an object’s cost models differences in retrieval

latencies or computation costs. In this setting, if an object is

cached, its next request does not contribute to the overall av-

erage cost, but no other requests are affected. This is different

from the delayed hits settings where a single caching decision

may affect many future requests (to the same object). By assum-

ing independence, cost-aware caching assumes that misses are

retrieved before another request to the same object arrives.

(2) Weighted, general, and other offline caching theory. This

group of algorithms [3, 6, 10, 14, 16–18, 61] considers offline

caching problems beyond Belady. Weighted caching is like cost-

aware caching, but using offline knowledge [17]. Caching for

variable object sizes optimizes hit ratios, but considers objects

that require a different number of bits to be stored in cache [3, 10].

General caching generalizes both by considering both weighted

and variably-sized objects at once [14, 18]. In general, these prob-

lems are NP-hard, except for weighted caching which can also

be approximated using a flow formulation.

The architecture community has a rich literature on implementing

non-blocking caches to handle multiple outstanding misses [1, 8, 35,

43, 53, 58] – a prerequisite for the occurrence of delayed hits. In ad-

dition, [49] considers the effect of correlated cache misses (different

fromdelayed hits, but in a similar vein) onMemory Level Parallelism

(MLP) performance in processors. Finally, we are aware of two prior

works [25, 56] which observe improved accuracy when accounting

for delayed hits in simulations of processor caches.

8 CONCLUSION

As we look forward to continuous increases in bandwidth and

throughput (e.g., in networks, memory, new storage technologies,

and CPU-interconnects), access latencies will become larger and

larger relative to request inter-arrivals, increasing the likelihood of

delayed hits. Indeed, we believe that the problem of delayed hits will

surface in almost any caching scenario sooner or later.

Our work constitutes a first step in recognizing and possibly mit-

igating the increased latencies created by this fundamental trend.

Nonetheless, as we discuss in §6, there remain many open questions

about incorporating delayed hits into practical caching schemes.

We look forward to future work in engaging with delayed hits as

we extend the theoretical literature and observe the importance of

delayed hits become more apparent in practical systems.

Ethics: This paper raises no ethical concerns.
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A APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A.1 LatencyMinimization Problem

In this sectionwe give a formal definition of the latencyminimiza-

tion problem for caching with delayed hits.

Recall that we consider a cache of sizeC andM objects indexed by

i ∈ [M].We are given a sequence object requests, whereσ (T ) denotes
the object requested at timestepT withT =0,1,...,N .

We use the following quantities to describe the state of the system

at the beginning of each timestepT . For each object i , let

x
(i)
0
(T )=1{object i is in the cache atT }, (4)

x
(i)
τ (T )=1{object i was requested atT −(Z +1−τ )

and the request has not been resolved}

τ =1,...,Z . (5)

Here, when an object i is requested but cannot be resolved immedi-

ately, we say that we put it in a queue. So (5) describes the state of

the queue for i .
We specify a cache schedule using the followingdecisionvariables.

Let ai (T ) be defined by

ai (T )=


1 if object i is admitted to cache atT ,

−1 if object i is evicted from cache atT ,

0 if no action is taken on object i atT .

(6)

To make sure ai (T ) with i ∈ [M],T = 0,1, ... ,N form a valid cache

schedule,we enforce the following constraints for each object i ∈ [M]

and timestepT =0,1,...,N :

• An object can be admitted only when its data arrives:

1{ai (T )=1} ≤x
(i)
1
(T ). (7)

• An object can be evicted only when it is already in the cache:

1{ai (T )=−1} ≤x
(i)
0
(T ) (8)

• The schedule should guarantee that the number of objects in the

cache is no larger than the cache sizeC:∑
i ∈[M ]

x
(i)
0
(T )≤C . (9)

Although it seems that this is a constraint on the state, it is in fact

a constraint on the cache schedule since the state at the current

timestep is determined by the past decisions. This will become

clear after we describe the relation between the state and the

schedule next.

With the notation above, we can write out how the system state

evolves over time as follows:

• The data that just arrived resolves the requests for the same object

in the queue, and other requests move forward in queue:

x
(i)
τ (T +1)=x

(i)
τ+1(T )·(1−x

(i)
1
(T )),

i ∈ [M],τ =1,...,Z−1,T =0,1,...,N −2. (10)

• The admission or eviction of an object changes the state in the

cache:

x
(i)
0
(T +1)=x

(i)
0
(T )+ai (T ),

i ∈ [M],T =0,1,...,N −2. (11)

• The new request comes in and is added to the queue if the re-

quested object is not in the cache:

x
(i)
Z (T +1)=1{σ (T )=i } ·(1−x

(i)
0
(T +1)),

i ∈ [M],T =0,1,...,N . (12)

It can be proven that the state that evolves according to the dynamics

above satisfies that for anyT =0,1,...,N −2,

x
(i)
0
(T )+1

{
∑Z
τ=1x

(i )
τ (T )>0} ≤ 1. (13)

This inequality states the fact that if object i is in the cache, then

there will not be requests for i in the queue, and if there are requests
of object i in the queue, then i is not in the cache.

At timestepT , object σ (T ) is requested. If it is not in the cache nor
requested during the pastZ timesteps, itwill trigger a sequence of de-

layed hits when σ (T ) is requested again during the nextZ timesteps.

Therefore, the total latency can be written as:

N−2∑
T=0

x
(σ (T ))
Z (T +1)·

Z−1∏
τ=1

(
1−x

(σ (T ))
τ (T +1)

)
·

Z−1∑
t=0
1{σ (T+t )=σ (T )} ·(Z−t). (14)

Then the latency minimization problem is to find the cache sched-

ule subject to the constraints (7)–(9) such that the resulting states

minimize the total latency in (14).

A.2 Proof of Theorem 1

We first give some notation for the flow variables and state the

MCMCF problem with the notation. We define a flow variable for

each object on each edge, which takes values from {0,1} and repre-
sents the fraction of flow for the object routed along that edge. In

particular, we define the flow variables below:

f
(i)
mem

(T ) : object i along edge (Vmem,T ,Vcch,T+Z ),

T =0,1,...,N −1−Z ;

f
(i)
cch

(T ) : object i along edge (V
cch,T ,Vcch,T+1),

T =Z ,1+Z ,...,N −2+Z ;

f
(i)
evict

(T ) : object i along edge (V
cch,T ,V

(T )
next,i ),

T =Z ,1+Z ,...,N −1+Z .

Note that f
(i)
mem

(T ) is always 0 if i,σ (T ) due to the infinite cost. Sim-

ilarly, the flow variable for object j along edge (V
cch,T ,V

(T )
next,i )with

j,i is also always 0. Here our formulation is a so-called ‘single-path

routing’ formulation, i.e., the flow variables are either 0 or 1 and they

together represent a path for each object. Additionally, for conve-

nience, for each vertexVmem,T , we use P
(j)(Vmem,T ) to denote the

set of vertices in the top row that have outgoing edges toVmem,T as-

sociatedwith object j . Our goal is tominimize the followingobjective

function:

N−1∑
T=0

c(σ (T ))(Vmem,T ,Vcch,T+Z )· f
(σ (T ))
mem

(T ), (15)

where c(σ (T ))(Vmem,T ,Vcch,T+Z ) is the latency cost in (2). The min-

imization problem is subject to the following constraints for each

object i:

• Link capacity:

f
(σ (T ))
mem

(T )≤ 1,T =0,1,...,N −1, (16)∑
i ∈[M ]

f
(i)
cch

(T )≤C,T =Z ,1+Z ,...,N −2+Z , (17)

f
(i)
evict

(T )≤ 1,T =Z ,1+Z ,...,N −1+Z . (18)



Here (17) models the constraint that we can have at mostC ob-

jects in the cache. The constraints (16) and (18) are automatically

satisfied.

• Flow conservation:

f
(i)
mem

(Ti )=1,whereVmem,Ti is the source of i, (19)

total incoming flow toV
(i)
sink

is 1, (20)∑
t : Vcch,t ∈P(i )(Vmem,T )

f
(i)
evict

(t)= f
(i)
mem

(T ),i=σ (T ),T >Ti , (21)

f
(i)
cch

(T −1)+ f
(i)
mem

(T −Z )= f
(i)
cch

(T )+ f
(i)
evict

(T ),

T =Z ,1+Z ,...,N −1+Z . (22)

Here the constraints (19) and (20) at sources and sinks are straight-

forward. The constraint (21) is a flow conservation constraint at

vertexVmem,T . It implies that if object i was evicted from the cache

beforeT and has not been requested since, then its data will be

fetched from the backing store to the cachewhen it is requested at

T . The constraint (22) is a flow conservation constraint at vertex

V
cch,T . Let us set f

(i)
cch

(Z−1)= f
(i)
cch

(N −1+Z )=0 so (22) is valid at
T =Z andT =N −1+Z . This constraint guarantees the obvious
requirement that an object is either in the cache or not in the cache.

Both the MCMCF problem and the latency minimization problems

are optimization problems. To show the equivalence of these two

problems, we first show in Lemma 1 below that the feasible set of

flow variables is ‘equivalent’ to the feasible set of caching schedules.

In particular, from any feasible cache schedule, we can define a set

of flow variables that are also feasible for the MCMCF problem; con-

versely,givenanyfeasible setofassignments toflowvariables,wecan

define a feasible cache schedule. Once we have this bijection, we can

show that the objective functions of these two problems are the same.

With equivalent feasible sets and objective functions, the MCMCF

problem and the latency minimization problem are thus equivalent.

Lemma. Given a sequence of object requests, there is a bijection

between the set of feasible flow variables and the set of feasible cache

schedules.

Proof of Lemma 1. We first prove that any feasible cache sched-

ule defines a set of feasible flow variables. Let ai (T ),i ∈ [M],T =
0,1,...,N be a feasible cache schedule. We show that the flow vari-

ables defined below are feasible:

f
(i)
mem

(T )=x
(i)
Z (T +1)·

Z−1∏
τ=1

(
1−x

(i)
τ (T +1)

)
, (23)

f
(i)
cch

(T )=x
(i)
0
(T )·1{ai (T )=0}+x

(i)
1
(T )·1{ai (T )=1}, (24)

f
(i)
evict

(T )=x
(i)
0
(T )·1{ai (T )=−1}+x

(i)
1
(T )·1{ai (T )=0} . (25)

Let us first consider the capacity constraints (16)–(18). It is easy to

check that the constraints (16) and (18) are satisfied. Nowwe check

the constraint (17). By the definition of f
(i)
cch

(T ) in (24),∑
i ∈[M ]

f
(i)
cch

(T )

=
∑
i ∈[M ]

(
x
(i)
0
(T )·1{ai (T )=0}+x

(i)
1
(T )·1{ai (T )=1}

)
(26)

When ai (T ) = −1, the summand in (26) is 0; when ai (T ) = 0, the

summand equals x
(i)
0
(T )=x

(i)
0
(T +1); otherwise, when ai (T )=1 and

x
(i)
1
(T )= 1, object i will be admitted to the cache so x

(i)
0
(T +1)= 1.

Combining these cases, we have that the summand in (26) is always

no larger than x
(i)
0
(T +1). Thus,∑

i ∈[M ]

f
(i)
cch

(T )≤
∑
i ∈[M ]

x
(i)
0
(T +1)≤C, (27)

and the constraint (17) is satisfied.

Next let us consider the flow conservation constraints (19)–(22).

It is easy to check that the constraints (19) and (20) are satisfied.

For the constraint (21), let i=σ (T ). Let t∗=max{t : t <T ,σ (t)=i}.
Then one can check that {t : V

cch,t ∈ P(i)(Vmem,T )} = {t∗ +1,t∗ +
2,...,T }. So it suffices to show that

T∑
t=t ∗+1

(
x
(i)
0
(t)·1{ai (t )=−1}+x

(i)
1
(t)·1{ai (t )=0}

)
=x

(i)
Z (T +1)·

Z−1∏
τ=1

(
1−x

(i)
τ (T +1)

)
. (28)

First, consider the case where x
(i)
1
(t)= 1 for some t∗ < t ≤T . Then

we must have t ≤ t∗+Z since there is no request for object i after t∗

and beforeT . This arrival at t will resolve all the requests for i in the

queue (if there exist any). We observe that x
(i)
0
(u)=0 for t∗ <u ≤ t

by (13) and x
(i)
t+1−u (u) = x

(i)
1
(t) = 1. Also x

(i)
1
(u) = 0 for t∗ < u < t

since otherwise it would have resolved the request and thus results

in no data arrival at t . If ai (t)=0, then the data is not admitted to the

cache. Also there is no request for object i on or after t (beforeT ). So

x
(i)
1
(u)=x

(i)
0
(u)=0 for t <u ≤T . Then when the request for i comes

in atT , it sees nothing in the cache nor the queue. So by the dynamics

in (12), we have x
(i)
Z (T +1)=1. Therefore, the right-hand-side (RHS)

of (28) is equal to 1, which is equal to the left-hand-side (LHS). For

the case that ai (t)=1, the data is admitted to the cache at t . There
can be at most one eviction after t and no later thanT (two evictions

require data arrival in between). If there is no eviction, then the LHS

is 0. The RHS is also 0 since the request for i atT will not be put in

the queue and thus x
(i)
Z (T +1)= 0. If there is an eviction at some u

with t <u ≤T , then all the summands except x
(i)
0
(u) ·1ai (u)=−1 on

the LHS are 0. So the LHS is equal to 1. The RHS is also equal to 1

since the request for i atT sees nothing in the cache nor the queue.

In summary, (28) holds when x
(i)
1
(t)=1 for some t∗< t ≤T .

Next, consider the case where x
(i)
1
(t)= 0 for all t with t∗ < t ≤T .

In this case there is no data arrival for object i during the whole time

period. Then again there can be at most one eviction. Suppose there

is no eviction for all t with t∗< t ≤T . Then the LHS of (28) is 0. In this
case, object i is either in the cache for all timestep t with t∗ < t ≤T
or it is not in the cache for all t with t∗ < t ≤T . If it is in the cache

all the time, then the RHS is also 0 since x
(i)
Z (T +1)=0. If it is always

not in the cache, thenT < t∗+Z since the request at t∗ is put in the

queue and arrive at t∗+Z , but we have assumed thatx
(i)
1
(t)=0 for all

t with t∗ < t ≤T . However,T < t∗+Z implies that x
(i)
t ∗+Z−T (T +1)=

x
(i)
Z (t∗+1)=1, which implies that the RHS of (28) is 0. Therefore, for

the case of no eviction, LHS and RHS are equal. Suppose there is an

eviction at some t with t∗< t ≤T . Then the LHS of (28) is equal to 1.

Sincewe have assumed thatx
(i)
1
(t)=0 for all t with t∗< t ≤T , object i

cannot reenter the cache after the eviction. Sox
(i)
τ (T )=0 for 0≤τ ≤Z .

Then the request for i atT will be added to the queue, so the RHS of

(28) is equal to 1. Therefore, LHS and RHS are also equal in this case.



Combining the arguments above, we have shown that the flow

conservation constraint (21) is satisfied.

Now let us check the constraint (22), i.e., we want to show that

x
(i)
0
(T −1)·1{ai (T−1)=0}︸                         ︷︷                         ︸

Term (L1)

+x
(i)
1
(T −1)·1{ai (T−1)=1}︸                         ︷︷                         ︸

Term (L2)

+x
(i)
Z (T +1−Z )·

Z−1∏
τ=1

(
1−x

(i)
τ (T +1−Z )

)
︸                                          ︷︷                                          ︸

Term (L3)

=x
(i)
0
(T )·1{ai (T )=0}︸                 ︷︷                 ︸
Term (R1)

+x
(i)
1
(T )·1{ai (T )=1}︸                 ︷︷                 ︸
Term (R2)

+x
(i)
0
(T )·1{ai (T )=−1}︸                   ︷︷                   ︸

Term (R3)

+x
(i)
1
(T )·1{ai (T )=0}︸                 ︷︷                 ︸
Term (R4)

.

(29)

We start by discussing different cases of Term (L3). Suppose (L3)=1.

Then

x
(i)
Z (T +1−Z )=1,x

(i)
τ (T +1−Z )=0,τ =1,2,...,Z−1. (30)

In this case, x
(i)
0
(T + 1−Z ) = 0 by (13) and object i will not arrive

until timestepT . So x
(i)
0
(t) = 0 for t =T +1−Z ,T +2−Z ,...,T , and

x
(i)
1
(T ) = 1. Then (L1) = (L2) = (R1) = (R3) = 0 and (R2)+ (R4) = 1.

Therefore (29) holds.

Now suppose (L3)=0. Then either x
(i)
τ (T +1−Z )=1 for some 1≤

τ ≤Z−1 orx
(i)
τ (T +1−Z )=0 for all 1≤τ ≤Z−1 andx

(i)
Z (T +1−Z )=0.

• Suppose it is the former case. Then let t∗ be the earliest time with

T +1−Z ≤ t∗ ≤T −1 such that x
(i)
1
(t∗) = 1. In fact, since all the

requests in queue will be resolved when the data arrives, t∗ is

also the only time betweenT −Z +1 andT such that x
(i)
1
(t∗)= 1.

So (R2) = (R4) = 0. Also, x
(i)
0
(t) = 0 for all t with T −Z ≤ t ≤ t∗.

If t∗ = T − 1, then (L1) = 0 and (L2) = (R1) + (R3). If t∗ < T − 1,

then (L2) = 0. Since x
(i)
0
(T ) = x

(i)
0
(T − 1) + ai (T − 1), we have

(L1)= (R1)+(R3). So (29) holds.

• Suppose it is the latter case, i.e.,x
(i)
τ (T +1−Z )=0 forall1≤τ ≤Z−1

and x
(i)
Z (T +1−Z ) = 0. Then x

(i)
1
(t) = 0 for T +1−Z ≤ t ≤T . So

(L2)= (R2)= (R4)=0. Similar to the former case, it can be shown

that (L1)= (R1)+(R3).

Combining the arguments above, we have shown that (29) always

holds and thus the flow conservation constraint (22) is satisfied.

Nowwe prove the other direction of the lemma, i.e., we prove that

any feasible set of flow variables define a feasible cache schedule. Let

f
(i)
mem

(T ),f
(i)
cch

(T ),f
(i)
evict

(T ) be a set of feasible flowvariables.We show

that the cache schedule defined below is feasible. For each timestep

T ≥Z ,

ai (T )=


1 when f

(i)
mem

(T −Z )=1, f
(i)
cch

(T −1)=0,

and f
(i)
evict

(T )=0,

−1 when f
(i)
cch

(T −1)=1 and f
(i)
evict

(T )=1,

0 otherwise.

(31)

For T with 0 ≤ T < Z , let ai (T ) = 0, which is always feasible. Let

x
(i)
τ (T )with i ∈ [M],τ =0,...,Z be the state of the system as defined

in (4) and (5) under this cache schedule in (31) . To show that this

schedule is feasible, we first prove the following claims.

Claim 1. For any object i and any timestepT ≥Z ,

x
(i)
0
(T )= f

(i)
cch

(T −1). (32)

Claim 2. For any object i and anyT ≥ 0,

f
(i)
mem

(T )=x
(i)
Z (T +1)·

Z−1∏
τ=1

(
1−x

(i)
τ (T +1)

)
. (33)

We note that in Claim 2,

x
(i)
Z (T +1)·

Z−1∏
τ=1

(
1−x

(i)
τ (T +1)

)
=1

⇔x
(i)
Z (T +1)=1,x

(i)
τ (T +1)=0 for all τ =0,1,...,Z−1

⇔x
(i)
1
(T +Z )=1.

Therefore, it is equivalent to f
(i)
mem

(T )=x
(i)
1
(T +Z ).

We prove both claims by induction.

Proof of Claim 1. Base case.WhenT =Z , x
(i)
0
(T )= 0 for all i since

we start from an empty cache and ai (u)= 0 for 0≤u <Z . We have

also defined f
(i)
cch

(Z−1) to be 0 as an custom. So x
(i)
0
(Z )= f

(i)
cch

(Z−1).

Induction step.Assume that for someT ≥Z ,x
(i)
0
(T )= f

(i)
cch

(T −1).

We want to show that x
(i)
0
(T +1)= f

(i)
cch

(T ). Note that by the system

dynamics in (11), we have that x
(i)
0
(T +1)=x

(i)
0
(T )+ai (T ).

We consider the different cases of ai (T ).

• If ai (T ) = 1, then by (31), f
(i)
cch

(T − 1) = 0, f
(i)
mem

(T −Z ) = 1 and

f
(i)
evict

(T ) = 0. By the flow conservation at V
cch,T , we have that

f
(i)
cch

(T ) = 1. By the induction assumption, x
(i)
0
(T ) = f

(i)
cch

(T − 1).

Then x
(i)
0
(T +1)=x

(i)
0
(T )+ai (T )=1. So x

(i)
0
(T +1)= f

(i)
cch

(T ).

• If ai (T ) = −1, then by (31), f
(i)
cch

(T −1) = 1 and f
(i)
evict

(T ) = 1. Due
to the unit demand of each object, it is not hard to show that the

total incoming flow an object to a vertex is at most 1. Specifically,

consider the vertexV
cch,T . Then f

(i)
cch

(T −1)+ f
(i)
mem

(T −Z )≤1. So

f
(i)
mem

(T −Z )= 0. By the flow conservation atV
cch,T , f

(i)
cch

(T )= 0.

Since x
(i)
0
(T +1)=x

(i)
0
(T )+ai (T )=0, we have x

(i)
0
(T +1)= f

(T )
cch

.

• If ai (T )=0, by (31), we have the following possibilities:

f
(i)
cch

(T −1)=0,f
(i)
mem

(T −Z )=1, (34)

f
(i)
cch

(T )=0,f
(i)
evict

(T )=1; (35)

or f
(i)
cch

(T −1)=1,f
(i)
mem

(T −Z )=0, (36)

f
(i)
cch

(T )=1,f
(i)
evict

(T )=0; (37)

or f
(i)
cch

(T −1)=0,f
(i)
mem

(T −Z )=0, (38)

f
(i)
cch

(T )=0,f
(i)
evict

(T )=0. (39)

For all the possibilities, f
(i)
cch

(T ) = f
(i)
cch

(T −1). Since x
(i)
0
(T +1) =

f
(i)
cch

(T −1)+ai (T ), we have x
(i)
0
(T +1)= f

(i)
cch

(T ).

This completes the proof of Claim 1.

Proof of Claim 2. Base case. When T = 0, by flow conservation,

f
(i)
mem

(0)=1 if and only ifσ (0)=i . Sincewe start from an empty cache

andai (u)=0 for 0≤u <Z , by the state dynamics (10)–(12),x
(i)
τ (1)=0

for all i ∈ [M] and τ = 0,1,...,Z , and x
(i)
Z (1)= 1 for i =σ (0) and 0 for

other objects. So (33) holds forT =0.



Induction step.Assume that for each timestepu with 0≤u ≤T ,

f
(i)
mem

(u)=x
(i)
Z (u+1)·

Z−1∏
τ=1

(
1−x

(i)
τ (u+1)

)
. (40)

We want to show

f
(i)
mem

(T +1)=x
(i)
Z (T +2)·

Z−1∏
τ=1

(
1−x

(i)
τ (T +2)

)
. (41)

First, it is not hard to see that

x
(i)
Z (u+1)·

Z−1∏
τ=1

(
1−x

(i)
τ (u+1)

)
=1

⇔x
(i)
Z (u+1)=1,x

(i)
τ (u+1)=0 for all τ =0,1,...,Z−1

⇔x
(i)
1
(u+Z )=1.

Therefore, the induction assumption (40) is equivalent to f
(i)
mem

(u)=

x
(i)
1
(u+Z ).
Observe that the RHS of (41) is equal to 1 if and only if σ (T +1)=i

and x
(i)
τ (T +2)= 0 for all τ = 1,2,...,Z −1. Then (41) is trivially true

for i,σ (T +1). So it suffices to focus on the case where i=σ (T +1).

IfVmem,T+1 is a source vertex of object i , then f
(i)
mem

(T +1)=1. By

flow conservation, f
(i)
mem

(u) = f
(i)
cch

(u) = f
(i)
evict

(u) = 0 for 0 ≤ u ≤ T .

Then ai (u)=0 for all 0≤u ≤T . So by the dynamics in the system, at

T +1 the request will see that i is not in the cache and the queue for
i is also empty. Then the RHS of (41) is equal to 1.

WhenVmem,T+1 is not a source vertex, let t
∗
be the last time object

i was requested, i.e.,

t∗=max{t : t <T +1,σ (t)=i}. (42)

Suppose f
(i)
mem

(T +1)=1. Then by flow conservation atVmem,T+1,

f
(i)
evict

(t)=1 for some t with t∗< t ≤T +1. Let t ′ be the latest timestep

with t ′≤ t such that f
(i)
mem

(t ′−Z )=1. By the induction assumption,

x
(i)
Z (t ′−Z +1) = 1 and x

(i)
τ (t ′−Z +1) = 0 for all τ = 1,2,...,Z −1. If

t ′≤ t−1, then by flow conservation f
(i)
cch

(t ′−1)=0 and f
(i)
evict

(t ′)=0.

So ai (t
′)=1 and x

(i)
0
(t ′+1)=1. Then this enforces x

(i)
τ (t ′+1)=0 for

allτ =1,2,...,Z . For alluwith t ′<u < t , we can verify that f
(i)
evict

(u)=0.
Then by the construction of the cache schedule, ai (u) = 0. There-

fore, the queue stays empty, i.e., x
(i)
τ (t) = 0 for τ = 1,2, ... ,Z . At

t , since f
(t−1)
cch

= 1 and f
(t )
evict

= 1, we have ai (t) = −1, and thus

x
(i)
0
(t + 1) = 0. For any u with t < u ≤ T + 1, we can show that

f
(i)
mem

(u) = f
(i)
cch

(u) = f
(i)
evict

(u) = 0, so ai (u) = 0. We also know that

σ (u −1) , i . So the queue for i stays empty at T +1 and i is not in

the cache atT +1. Combing these, we can see that x
(i)
τ (T +1)=0 for

τ =1,2,...,Z−1 andx
(i)
Z (T +2)=1. So f

(i)
mem

(T +1)=RHS. If t ′=t , then

we have f
(i)
mem

(t −Z )= f
(i)
evict

(t)= 1 and f
(i)
cch

(t −1)= f
(i)
cch

(t)= 0, and

thus ai (t)=0. Using similar arguments as above, we can show that

the queue for i stays empty and i is not in the cache atT +1. Then

the RHS is 1 and thus f
(i)
mem

(T +1)=RHS.

Now consider the case where f
(i)
mem

(T +1)= 0. Then f
(i)
evict

(t)= 0

for all t with t∗< t ≤T +1. If f
(i)
cch

(T )=1, then by flow conservation,

f
(i)
cch

(T +1)= 1. Then by Claim 1, x
(i)
0
(T +2)= f

(i)
cch

(T +1)= 1. Then

x
(i)
Z (T +2)=0 and thus f

(i)
mem

(T +1)=RHS. If f
(i)
cch

(T )=0, then again,

by flow conservation, we have that f
(i)
cch

(t−1)=0 and f
(i)
mem

(t−Z )=0

for all t with t∗ < t ≤ T + 1. By Claim 1, x
(i)
0
(t∗ + 1) = f

(i)
cch

(t∗) =

0. If f
(i)
mem

(t∗) = 1, then we must have T + 1 − t∗ < Z . Therefore,

x
(i)
t ∗+Z−T−1(T +2)=x

(i)
Z (t∗+1)=1 and thus the RHS of (41) is equal

to 0. If f
(i)
mem

(t∗) = 0, then x
(i)
Z (t∗ + 1) = 0 or x

(i)
τ (t∗ + 1) = 1 for

some τ = 1,2, ... ,Z − 1. Since x
(i)
0
(t∗ + 1) = 0, there must exists a

τ =1,2,...,Z−1 such that x
(i)
τ (t∗+1)=1. Let τ ∗ be the smallest τ such

thatx
(i)
τ (t∗+1)=1. Thenx

(i)
1
(t∗+τ ∗)=1. Since1≤τ ∗ ≤Z−1,wehave

t∗+τ ∗−Z ≤T and thus by the induction assumption f
(i)
mem

(t∗+τ ∗−

Z )=x
(i)
1
(t∗+τ ∗)=1. Wemust have t∗+τ ∗>T +1 since f

(i)
mem

(t−Z )=
0 for all t with t∗ < t ≤ T + 1. Then 1 ≤ t∗ +τ ∗ −T − 1 ≤ Z − 1 and

x
(i)
t ∗+τ ∗−T−1(T +2)=x

(i)
1
(t∗+τ ∗)=1. Thus 0= f

(i)
mem

(T +1)=RHS.
This completes the proof of Claim 2.

From Claims 1 and 2, it is easy to see that

1ai (T )=1 ≤ f
(i)
mem

(T −Z )=x
(i)
1
(T +Z ) (43)

1ai (T )=−1 ≤ f
(i)
cch

(T −1)=x
(i)
0
(T ) (44)∑

i ∈[M ]

x
(i)
0
(T )≤C=

∑
i ∈[M ]

f
(i)
cch

(T −1)≤C . (45)

This verifies the constraints (7)–(9) and proves that the cache sched-

ule defined in (31) is feasible. □

Once we have Lemma 1, the only thing left is to show that the

MCMCF problem and the latency minimization problem have the

same objective function. This is easy to see once we compare the

objective functions (15) and (14) and apply Claim 2 from the proof

of Lemma 1.

A.3 Optimizations to Reduce Complexity

In this section, we provide implementation details of belatedly

for reducing complexity. Our overall approach is illustrated in Fig-

ure 6.

A.3.1 Pruning andMerging.
While theMCMCF formulation is conceptually simple, a naive imple-

mentation of the algorithmhas serious practical limitations. Observe

that the number of flowvariables in theMCMCF formulation isO(N ·

M). For a request sequence of sizeN =250,000 containingM =20,000
objects, the number of decision variables alonewould be on the order

of 10
10
. Further, the total number of flow conservation constraints

isO(N ·M) (see (19)–(22)). In Gurobi, where decision variables are

encoded as 64-bit floating-point values, and constraint expressions

as vectors of 64-bit pointers to the relevant decision variables, simply

encoding the model would require well over 400 GB of memory.

In this section, we describe two optimizations to the above formu-

lation that allowus to significantly tighten the resource requirements

(memory and execution time) for solving the MCMCF problem and

to make it more tractable. Our goal is to be able to compute be-

latedly on a 32-core x86 server with 128 GB of RAM, for request

sequences containing N ≈250,000 requests,M ≈50,000 objects, and
any combination of z andC .

Caching Intervals. Since the majority of decision variables stem

from either (V
cch,n ,Vcch,n+1) (cache-to-cache) or (Vcch,n ,Vmem,x )

(cache-to-memory) edges, we first attempt to reduce the number

of elements in these sets. The key idea here is that, for each object,

the request sequence can be partitioned into disjoint intervals

(composed of one or more consecutive timesteps) where belatedly
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cch,t+6 V
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Naive caching intervals for a:

Figure 23: A fragment of a request sequence highlighting nodes and

edges corresponding to object a (colored red), with Z =3.

is never incentivized to change its caching decision for that object;

we call these caching intervals.

To concretize this notion, consider the subproblemdepicted in Fig-

ure 23. Per the original MCMCF formulation, there are four distinct

decision variables on edges between cache vertices corresponding

to a (denoted by x1, x2, x3, and x4). Now, consider the possibility of
routing flow along edges labeled 1, 2, and 3. All three edges have the

same capacity, cost-per-unit-flow, and destination node. Effectively,

the latency cost incurred by evicting a using any of these edges is
identical. However, observe that routing a’s flow along edge 2 in-

volves keeping a in the cache for one timestep longer than routing

it along edge 1. Similarly, routing a’s flow along edge 3 involves

keeping it in the cache for two additional timesteps. Since deferring

the eviction consumes valuable cache space (but yields no tangible

benefit in terms of latency cost), it is strictly better to evict a using
edge 1 (at timestep t+4) than using edges 2 or 3.

This simple observation gives us three major optimization oppor-

tunities. In particular, it enables us to:

• Eliminate the redundant edges 2 and 3 (along with the corre-

sponding decision variables).

• Replacex2,x3, andx4 with a single decision variable,x
′
2
. Since

edges 2 and 3 no longer exist, any flow entering cch(t+4) must

remain in the cacheuntilcch(t+7); inotherwords,belatedly’s
caching decision remains the same for the entire duration of

the interval [(t+4), (t+7)).
• Eliminate flow conservation constraints involving object a
for nodes cch(t+5) and cch(t+6). In the new representation, for

each object, i , we only need flow conservation constraints for

Vcache nodes corresponding to the end-points of i’s caching
intervals.

Lastly, this representation also allows us to bound the total num-

ber of caching intervals for any request sequence. Let ni denote the
number of requests to object i in a given request sequence of size

N . Observe that an endpoint of object i’s caching intervals is aVcch
node that either corresponds to i being admitted into the cache, i
being evicted from it, or both. Since there are exactly ni admission

edges corresponding to object i , there must be at least ni endpoints
(or, equivalently, ni−1 intervals) corresponding to i . Conversely, in
the worst case, there are ni −1 additionalVcch nodes which have

eviction edges corresponding to objecta. Thus, theremay asmany as

2ni−1 unique endpoints (or, equivalently, 2ni−2 caching intervals)
corresponding to i . The total number of caching intervals (for all

. . . . . . a a . . .

a. . . a a a . . .

3(u=
1, c

(a) =
6)

1
2

Vmem,t

V
cch,t−k V

cch,t−1 V
cch,t+3

cost (t )=3+2+1=6

Figure 24: A fragment of a request sequence highlighting ingress

and egress edges for nodeVmem,t , with Z =3.

. . . . . . a a . . .

1’

(u=1, c(a)=6)
2’

(u=1, c(a)=6)

V
cch,t−k V

cch,t−1 V
cch,t+3

Figure 25: The optimized representation with backing store nodes

removed.

objects),K , can then be bounded as follows:∑
i ∈[M ]

(ni−1)≤K ≤
∑
i ∈[M ]

2(ni−1)

⇒N −M ≤K ≤ 2(N −M).

For a fragment of an empirical trace (CAIDA Chicago, 2014) con-

taining N =250,000 packets andM =37,725 objects (unique flows),
the total number of caching intervals is on the order of 400,000.
Compared to the naive formulation, this optimization reduces the

number of decision variables from 18×109 to 106, and the number

of model constraints from 9×109 to 106.

Optimizing Away Backing Store Nodes. Partitioning the global set
of nodes into cache nodes and backing store nodes is a convenient

abstraction since it allows us to reason about cache evictions and

admissions independently of one another. Unfortunately, this rep-

resentation also adds considerable overhead: excluding sink nodes,

there are N backing store nodes, each of which contributes one de-

cision variable on an edge (Vmem,T ,Vcch,T+Z ), as well as one flow
conservation constraint. However, observe that, in our MCMCF for-

mulation, any flow entering aVmem,T nodemust be routed to the

corresponding cache node,V
cch,T+Z . This leads us to our next op-

timization: replacing pairs of cache eviction and admission edges of

the form (V
cch,T ,Vmem,x ) and (Vmem,x ,Vcch,x+Z )with a single edge

(V
cch,T ,Vcch,x+Z )withunit capacity and costc

(i)(V
cch,T ,Vcch,x+Z )=

c(i)(Vmem,x ,Vcch,x+Z ) for object i .
As an example, consider the subproblem depicted in Figure 24.

Here,Vmem,t has two in-edges, labelled 1 and 2, and one out-edge,
labeled 3. Using the optimization strategy discussed above, we can

coalesce edges 1 and 3 into a single edge, 1’, with a capacity of 1 and

a cost-per-unit-flow of c(a) =6. Similarly, we can coalesce edges 2

and 3 into a single edge, 2’. This effectively disconnects nodeVmem,t
from the remainder of the flow graph, and we can safely remove



it from V . A visual representation of the optimized flow graph is

depicted is Figure 25. Overall, this optimization:

• Eliminates N decision variables corresponding to all N back-

ing store to cache edges.

• Eliminates N flow conservation constraints corresponding to

backing store nodes (excluding sink nodes).

For the aforementioned empirical trace, this optimization reduces

the total number of decision variables and model constraints by

another 25% (down to 750,000 each). Overall, the optimized MCMCF

formulation (expressed in Gurobi C++ format) occupies under 25

GB of memory.
17

A.3.2 Rounding to Approximate Integer Solutions.
Recall that, since the integer version of MCMCF is NP-Complete,

we instead opt to solve a fractional (or relaxed) version of the prob-

lem by removing the integrality constraints. However, this often

results in solutions that do not map on to realistic caching strate-

gies.
18

In this section, we describe our methodology for extracting

an implementable caching schedule from a fractional solution.

A naive, yet intuitive, strategy is to simply round any non-zero

fractions of evicted flows to 1, thereby always creating enough space

in the cache for the next object to be admitted; unfortunately, this

greedy rounding strategy does not generally work. It is easy to con-

struct request sequences where evicting too much flow results in

a violation of the cache capacity constraint several timesteps later.

Further, attempting to satisfy the constraint by randomly evicting

objects causes the upper-bound on the latency cost to diverge signif-

icantly from the true optimum. belatedly addresses this problem

in two ways:

(1) Instead of rounding all non-zero evicted flow fractions to 1, round-

ing is done with a probability corresponding to the fraction itself

(a form of randomized rounding). In other words, if the fraction of

flow for object i evicted at timestepT is f
(i)
evict (T ) ∈ [0,1], then we

perform eviction with probability f
(i)
evict (T ). This ensures that, in

expectation, the cache occupancy at any timestep is equal to the total

flow routed along the corresponding edge in the MCMCF solution.

(2) While randomized rounding works well in theory, it does not

guarantee that the cache capacity constraint is satisfied. In order to

enforce this, we introduce the notion of flow balance. The idea is to

track the expected amount of cached flow for each object (according

to the fractional solution); then, at any timestep, if the cache occu-

pancy would exceed the cache size, we evict the flow that is most

unbalanced (deviates the most from its expected cached fraction). In

practice, this is implemented using a priority queue.

A.4 belatedly Performance Evaluation

Recall that we apply two optimizations tomake theMCMCF prob-

lem described in §3.1 tractable: first, we prune and merge states in

the flow graph to reduce the number of decision variables (§A.3.1);

second, we solve a ‘relaxed’ version of the problem, followed by

integer rounding (§A.3.2), to ensure that the algorithm terminates

in polynomial time. In this section, we evaluate the benefits of these

optimizations (using the naive MCMCF formulation as a baseline),

as well the impact of rounding on belatedly’s latency upper-bound.

17
This includes overheads incurred by Gurobi’s internal data-structures; the rawmodel

itself is significantly more compact.

18
For instance, the optimal fractional solution may involve caching half an object,

which is not particularly meaningful.
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Figure 26: Number of decision variables in the naive MCMCF

formulation versus belatedly for different application scenarios.

Our optimizations to the original MCMCF formulation re-

duces belatedly’s memory and compute requirements by

orders ofmagnitude. In Figure 26we count the number of decision

variables in the MCMCF formulation given our naive construction

(§3.1) and our pruned version (§A.3.1). For all three application sce-

narios, the number of decision variables is reduced by three to four

orders of magnitude.

Empirically, the formulation provides tight bounds. While

solvinga ‘relaxed’versionof theproblemonlygivesusa lower-bound

on the total latency (and not an implementable schedule), our ran-

domized rounding strategy and flow balance heuristics work well in

practice. For each application scenario, we perform 20 runs of belat-

edly sweeping differentZ values and cache sizes. Across all three

scenarios, we see a median error of at most 0.05% and a maximum

error of 1.71%. Table 3 lists the relative error between the upper- and

lower-bounds of the solution generated by belatedly.

Mean Err.% Median Err.% Max. Err.%

Network 0.017 0.004 0.124

CDN 0.325 0.051 1.707

Storage 0.015 0.007 0.072

Table 3: Empirical bounds on belatedly’s error (calculated by

comparing the integer upper-bound to the relaxed lower-bound).
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