Evaluating Software Switches: Hard or Hopeless?

Vivian Fang
Tamas Lévai
Sangjin Han
Sylvia Ratnasamy
Barath Raghavan
Justine Sherry

) _ SWRRETLILLE i
iy B | ' ¥
(Ll) e
il J %

..
1

hl--

& i

Electrical Engineering and Computer Sciences
University of California at Berkeley

e
!

18

Technical Report No. UCB/EECS-2018-136
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-136.html

October 12, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Evaluating Software Switches: Hard or Hopeless?

Vivian Fang
UC Berkeley, Nefeli Networks

Sylvia Ratnasamy
UC Berkeley, Nefeli Networks

ABSTRACT

Network virtualization, network functions virtualization, exper-
imental switching and routing protocols, and many other appli-
cations rely on software switches. In the wake of these demands,
industry and research efforts now develop a multitude of switches,
e.g. Open vSwitch, FD.io VPP, BESS, Lagopus, Open Contrail, and
Linux Kernel routing.

Given this proliferation of switch implementations, researchers
face obvious questions for evaluation. Which switch is best? Or,
more realistically, what workload features impact performance?
What trade-offs are implied by different design choices in each
switch implementation?

Our own efforts to answer such straightforward questions have
nonetheless met roadblocks - for reasons that, to our knowledge,
have never been explicitly studied or reported. In this paper, we
report on the challenges in performing a fair and meaningful eval-
uation. We propose some strawman solutions to these challenges,
but look to the community for constructive conversation regarding
our challenges as well.

1 INTRODUCTION

Today’s software switch ecosystem offers countless options for
deployments servicing widespread use-cases; from network func-
tions virtualization (NFV) to data center multitenancy and network
virtualization, to experimentation and new protocol designs. The
combined market for SDN, NFV, and Virtual Networking all of
which integrally involve software switching is projected to reach
$18 billion by 2020 [28]. Faced with so many choices of software
switches — VPP [15], Open vSwitch (OVS) [27] and OVS-DPDK [2],
BESS [17], Open Contrail [1], ESwitch [24], Lagopus [30], Linux
kernel routing [10] and others - a network engineer will naturally
be faced with deciding which switch is best for their needs.

Understanding which switch is “best”, however, entails analy-
sis of numerous factors: what performance metrics matter? What
workload factors impact each metric? Further, for researchers and
developers seeking to design the next generation of improved soft-
ware switches, we might also ask: are there fundamental tradeoffs
in the design choices that different systems make? What imple-
mentation choices in switches make the most impact on latency,
throughput, or jitter?

To date, no comprehensive evaluation of these questions exists.
Publicly distributed industry reports focus on narrow test cases, and
are often designed to demonstrate that a particular switch “wins”,
with insufficient information to reproduce results [14, 33]. Many of
these reports are designed more as marketing material than honest
evaluation. More academic evaluations typically focus on the de-
sign and implementation of the authors’ novel switch design and

Tamas Lévai

Barath Raghavan
ICSI, Nefeli Networks

Sangjin Han
UC Berkeley, Nefeli Networks

Justine Sherry
CMU, Nefeli Networks

hence evaluate their own system compared to a small selection
(typically, only one) of other switches — with narrow experiments
designed to focus on the core features of the new switch. For exam-
ple, the NSDI OVS paper primarily focuses on the performance and
benefits of its novel flow-caching strategies, but offers little in the
way of head-to-head comparisons against its competition [27]. The
PISCES paper similarly focuses on its compiler and ability to re-use
the OVS architecture for P4 programs — but does no comparisons
against other programmable switches [34]. A few academic efforts
do perform third-party evaluations of switches, but are limited in
scope — focusing on a single switch at a time [5, 13], or a few point
design comparisons between switches [19].

In short, software switches are a crucial component of network
infrastructure today — and with so many switches on the market,
we are in the midst of a battle both for market share and for what
technical designs [26] will win out. Nonetheless, efforts to date to
evaluate these switches head-to-head fall short of providing clarity
in this battle.

We too fell short of evaluating software switches!

We set out to do a systematic, comprehensive, and unbiased
comparison of software switches. Yet, we were repeatedly stymied,
often for reasons that to our knowledge have never been explicitly
reported or tackled.

In this paper, we instead report on why we stumbled, describing
our experiences, providing some suggestions for progress, and
proposing some open questions that remain in our way. That is, our
goal is not to identify the “winner” or answer questions regarding
the ideal software switch design (we leave this to future work).
Instead, we ask: is such an evaluation even feasible? What can we
do to make such an evaluation both tractable and meaningful?

In what follows, we identify six challenges that face a fair and
comprehensive evaluation; for each challenge we either propose a
strawman solution or leave open the question(s) of how to evaluate

the challenge.

e Testing systems requires configuring them for peak perfor-
mance on the hardware they’re deployed on. How do we do
this?

e Performance varies across so many dimensions — e.g. packet
size, flow duration, number of concurrent flows. How do we
measure which switches have the most performance “stability”
despite fluctuations across all dimensions?

e Does switch architecture matter more than implementation?

e How can we quickly identify which algorithmic/design dif-
ferences in switches impact performance the most — without
reading thousands of lines of code?

e How do we standardize what metrics switch users — like data-
center and telco operators — care most about?

Container ~ Container
Server | Server serverl

I:l I:l smmq‘ Switch lSwitchl % @ !EI

(a) Host (b) Datacenter (c) Telco Network
Figure 1: Three usage scenarios for software switches.

e How do we evaluate seemingly unquantifiable features (e.g.
feature completeness or external tool compatibility) that do not

relate to system performance?
We ask the community for their proposals and solutions as well,

not just for the benefit of our own research, but so that we as a
community can arrive at shared conclusions for the best way to
evaluate software switches (and perhaps even generalize our shared
conclusions to other networked systems as well).

2 BACKGROUND

Software switches are far richer and more extensible than stan-
dard L2 ‘switching’. In Figure 1, we illustrate three common deploy-
ments for software switches. In (a), we see a switch steering traffic
between co-resident containers (the same approach can be used
to steer traffic between VMs and processes); the switch may also
implement some access control policies between containers. In (b),
we see switches deployed on hosts within a datacenter; here the
switches are used in instantiating separate overlay networks over
a shared datacenter fabric (implementing virtual networking). The
switches may add additional (VXLAN, Ethernet, even IP) headers,
drop packets which violate policy, and steer packets within the
local host. In (c), we see a telecommunications network using a
software switch for routing in NFV, steering packets between a se-
quence of network functions (NFs); this type of steering can be done
by inspecting and modifying a Network Services Header (NSH).
Not shown, software switches can also be used for research and
experimentation, as a fast way to prototype experimental protocols.

All switches have some number of ports — which may be physical
(connected to a NIC) or virtual (connected to a container or VM).
Connecting these ports is a switch’s software fabric, the code which
decides where to steer packets, when to drop packets, or how to
modify packets. This fabric may be implemented in the kernel (e.g.
Linux Bridging and OVS) or in user space (e.g. OVS-DPDK, Lagopus,
VPP, or BESS). Software switches usually involve multiple cores
carrying packets from the input port, through the fabric, and to the
output port in parallel.

The switch fabric usually consists of a sequence of discrete mod-
ules; these modules may consist of arbitrary C++ code (a design
approach proposed by Click [21]) or they may consist of match-
action tables (as popularized by OVS). The lead developer of OVS
refers to switches with C++ modules as ‘code driven’ switches, and
switches with table-based modules as ‘data driven’ switches [26].
However they are implemented, switch code is typically tightly
tuned for performance, aiming for latencies in the 10s of ys and
throughputs in the 10s of millions of packets per second (Mpps).

3 CHALLENGES

We now discuss our six challenges for software switch evaluation.
In our discussions, we provide experimental data from our own
testbed. For all provided data, we use the following setup with two

-+
v
4

Throughput (Mpps)

OVS-DPDK (unoptimized) *=+* OVS-DPDK (optimized) =+
BESS (unoptimized) =4 =
VPP (unoptimized) *

BESS (optimized) =€
VPP (optimized) =€

Time (s)
Figure 2: BESS, OVS-DPDK, and VPP throughput with their
respective tuned GRUB configuration and with the default
Ubuntu GRUB configuration. Correctly tuning GRUB con-
figuration leads to improvements in throughput, as well as
reductions in throughput variance.

TO rececceeeseenssennsennsnateooteens 18

60 frecereeeereanrecnetcintiiniinaiaans 16 -
B 50 frereeeneenee e R g 14
2 s
PRRET) SXITIITIRPREN [N % NSRS z
B 2 10
= =
O TI R ITOIRTt [N o> EOCRORS S
g E
I R o E 6

4
10 freeeees ﬂ -------- 1 R,
A X A IRE

OVS OVS-DPDK
Default C—— DPDK-optimized EXXA

Scenario 1 Scenario 2
Static C— Dynamic XXX
Figure = 3: Throughput Figure 4: Throughput for
for OVS and OVS-DPDK two BESS pipelines using ei-
with/without a DPDK- ther the dynamic or static
optimized GRUB scheduler

identical servers. One server serves as the packet generator and the
other serves as the device under test (DUT) running the software
switch and (when relevant) VMs. Each server has two 14-core Intel
Xeon E5-2690 v4 2.6GHz CPUs that have HyperThreading disabled,
and two single-port Intel XL710QDA2 40Gbps NICs.

3.1 Challenge #1: System Configuration

Researchers usually engineer experimental testbeds for software
switches to provide the latest hardware features, ensuring that, e.g.,
the testbed has enough memory and NIC capacity for high through-
put. However, for all switches we have worked with, READMEs
and installation guides only provide the minimum instructions to
simply get the switch running. In our experience, there are many
kernel parameters, BIOS configurations, operating system settings,
and architecture-specific GCC flags that must be modified to reach
peak performance on the provided hardware. For example, it is
standard practice to disable HyperThreading and energy savings
features (both of which reduce throughput) in the BIOS; it is also
very common to manually isolate and assign processor cores to OS
processes, and to use different compiler parameters. None of these
practices are documented in any switch README or SETUP files,
but are rather recorded by third-parties [9] or have to be inferred
from the switch’s underlying implementation e.g.whether it is built

on DPDK, how it schedules processes, etc.To perform a fair com-
parison, researchers need to evaluate each switch under its own
peak configuration/installation.

Tuning system parameters improves performance significantly

over default settings. In Figure 2, we show throughput for BESS [17],
OVS-DPDK [2], and VPP [15] running an empty processing pipeline,
each with a standard GRUB (Linux boot loader) configuration and
an optimized GRUB configuration. Some examples of changed set-
tings in each configuration include: disabling energy-saving set-
tings and HyperThreading in the BIOS, setting larger hugepages,
and isolating switch-dedicated of CPUs from the kernel scheduler
(note that this does not include parameters set in the OS, such as
core-to-process allocation or scheduler selection and customiza-
tion). For all three switches, using the standard GRUB configuration
leads to lower throughput — and for OVS-DPDK and BESS, the de-
fault GRUB also leads to significant throughput instability. VPP has
consistent throughput in both cases because it automatically pins
cores; and the increase in throughput is also attributed to specifying
which cores to pin.

Because the GRUB configuration parameters are detailed, have
a significant impact on throughput, but are unspecified, their ex-
istence makes it hard for parties not closely involved with switch
development to be sure they have fairly measured a switch’s per-
formance results.

Parameter tuning for switches is not one-size-fits all: differ-
ent switches require different settings. Making things even
more challenging for evaluators, we cannot simply specify a fixed
set of system configuration parameters for all switches, as different
switches require different settings. In Figure 3, we plot throughput
for OVS-DPDK [2] and regular OVS [27] using each of two GRUB
configurations: one configuration which isolates cores from the OS
kernel and one which does not. User-space applications like OVS-
DPDK benefit from core isolation because it prevents the kernel
from assigning additional processes to the same core, competing
for resources with the switch. However, where OVS-DPDK benefits
from this optimization, base OVS actually suffers a 17.3% decrease
because OVS carries packets through the kernel, and consequently
has fewer cores to schedule packet processing tasks.

Even the same switch may require different settings given
different workloads and use-cases. Given the previous two ex-
amples, one might be prepared to package one set of configuration
parameters for each switch. Unfortunately, one cannot package
a set of parameters and expect it to perform ideally, even in the
context of a single switch as different workloads and use cases can
require different settings. For example, BESS [17] offers two differ-
ent schedulers: a dynamic, pushback-based [22] scheduler which
detects forwarding pipeline bottlenecks and adjusts task service
times to avoid wasted work, and a default scheduler which does not
detect pipeline bottlenecks and serves all forwarding tasks accord-
ing to a static policy. Figure 4 shows throughput with the dynamic
and static scheduler for two switch workloads:

e Scenario 1 has one core serving two packet processing tasks,
one which forwards packets to a slow NF, and one which for-
wards packets to a fast NF. The dynamic scheduler detects that
one task is servicing fewer packets and thus allocates more CPU

OVS-DPDK =€~

OVS-DPDK == [

Throughput (Mbps)

O

64B 1500B IMIX

Packet Size .
Flows (#)

Figure 5: Throughput for
OVS-DPDK for various
packet sizes.

Figure 6: Throughput for
OVS-DPDK for an increas-
ing number of flows.

time to the faster worker, increasing net throughput relative to
the default.

e Scenario 2 has one core serving one worker, but this worker
splits incoming packets between delivering them to a slow NF
and a fast NF. The dynamic scheduler observes that not all
packets are being served (because of the slower NF) and hence
schedules less CPU time to the task - leading to fewer packets
being delivered to the fast NF and a lower aggregate throughput
than the default.

OPEN QUESTION: To guarantee fair comparison, how can evalua-
tions of software switches evaluate each given switch and workload
under ideal configuration parameters?

STRAWMAN: Switches should be able to "self-tune" their config-
urations on installation. Designing switches to do so is, however,
non-trivial — a switch needs to look at a variety of hardware op-
tions and with little or no knowledge about the incoming workload
make all the right choices about scheduling, BIOS options, kernel
parameters, etc. Hence, we believe this is an open research question.
It is also worth noting that self-tuning switches would not only
make evaluation easier, but make deployment of software switches
easier for network administrators!

3.2 Challenge #2: Performance Stability

Once an evaluator has configured their testbed (as discussed in
the previous section), they must then consider the traffic workloads
over which to test the switch. These test parameters include offered
load, the number of concurrent flows, the flow arrival rate, distribu-
tion of packet sizes, flow duration distribution etc. In live production
deployments, all of these parameters can change dynamically e.g.,
as usage changes with time of day or as flash crowding leads to
bursty, unexpected changes in traffic characteristics. Hence it is no
surprise that in our conversations with operators, we have learned
that they value performance stability — that the switch will provide
good throughput, latency, and jitter under a range of these traffic
parameter configurations.

Nonetheless, in research evaluations there is a tendency to show
isolated data points as only a single parameters. For example, Fig-
ure 5 shows the median throughput as the packet size changes (64B,
1500B, and simple IMIX [4]) for OVS-DPDK configured with 10,000
IP-based forwarding entries. For this test, the traffic load includes
1024 concurrent flows with a flow arrival rate of 5 seconds. Figure 6
shows the average throughput for the switch configuration and

40 |- BESS NAT —e—
: BESS Passthrough —e—1

0] AS— e VPP IP —5— ..
: BESS [P —&—i

DG .

Deviation from Median (%)
T

Cores (#)
Figure 7: BESS and VPP NAT and IP routing, plotted with
parameter error bars.

same traffic load, but we vary the number of active flows and fix
packet size at 64B.

Both of these figures show that OVS-DPDK is sensitive to both
packet size and flow arrival rate — but what they do not illustrate is
the range of throughputs an operator can expect from OVS-DPDK
as these parameters and others all change simultaneously.

OPEN QUESTION: How do we quantify or visualize performance
stability — the range of switch behavior given variations in work-
load?

STRAWMAN: We suggest a simple visualization called parameter
error-bars. Traditionally error bars are used to show statistical vari-
ation for a fixed workload — we suggest using error bars to show
variation over the entire workload parameter space. Consider a
traffic generator with options to adjust packet size, flow duration
distribution, flow arrival rate, and average number of concurrent
flows. An evaluator might run experiments by sampling from the
Cartesian product of all parameters, and then plot the median result
along with error bars showing the maximum and minimum results
across all runs. Figure 7 shows a comparison between VPP and
BESS both running a NAT and a L3 Forwarder, now with a sam-
pling of changes in all variables. The peak of the error bar shows
the maximum observed throughput, and the bottom shows the min-
imum, both normalized relative to the median observed throughput.
As a baseline, we plot parameter error bars for BESS passthrough
forwarding (which performs no operations over packets) as well.

In this case, we see that the NAT implementations of BESS and
VPP are much more variable than passthrough routing or IP routing
as the workload for each implementation changes. BESS’s IP routing
implementation is more stable than VPP’s. One interpretation is
that VPP (which has 3-4x less throughput than BESS) is more
variable because there are more stages in processing a packet, and
each stage/step has some amount of variability which compounds.
Most importantly, for this discussion, stability is a feature we would
not have observed without plotting our results in this fashion.

3.3 Challenge #3: Does Architecture Matter?

As researchers, we often focus on system architectures and seek
to explain performance differences as stemming from fundamental
architectural differences. However, this tendency is not limited
to researchers. In an influential keynote presentation and blog
post, Ben Pfaff, the lead developer of OVS, characterized software

switches as following one of two architectural designs: ‘code-driven’
or ‘data-driven. This characterization has been widely embraced in
industry and results comparing, e.g. OVS and VPP [3], are viewed
as shedding light on which architectural choice wins.

While perhaps an unpopular position, in our experience, archi-
tectural differences of the form Pfaff raises are typically a secondary
factor at best in explaining performance differences. Instead, it is
more common that algorithms and implementation techniques -
applicable to any architecture (with some non-trivial developer
effort) — bring the majority of performance gains.

For example, OVS by default can forward only 1.68 Mpps using a
single core, with latencies averaging 129.65us — an order of magni-
tude worse than switches like Lagopus, VPP, and BESS. The primary
source of this performance gap between these switches is not archi-
tectural, but that OVS runs through the kernel while the latter three
switches are built with kernel bypass through DPDK and/or SR-IOV
[12]. Changing this one implementation choice brings OVS-DPDK
up to 12.92Mpps and 18.2us of latency, making its performance
comparable to competitors (both code- and data-driven).

To name a few more examples, tuple-space search algorithms
for table lookups [35], Read-Copy-Update rather than traditional
locking [23], and packet batching [20] have all brought substantial
benefits to switching in both code- and data-driven designs (and
these benefits far outweighing any apparent differences from the
architecture itself).

OPEN QUESTION: Is our claim above - that architectural differ-
ences are secondary when it comes to performance - true? Our
hypothesis is based on point observations; how can we more rigor-
ously show this?

3.4 Challenge #4: Identifying and Isolating
Implementation Differences

It is common for benchmarks to evaluate different switches for
particular tasks, e.g., ‘L3 Forwarding’ or ‘NAT". Internally, however,
these may be implemented using different algorithms - and these
differences between algorithms lead to big differences in perfor-
mance.

For example, a 2015 study evaluated throughput sensitivity to
concurrent flows, comparing VPP and OVS-DPDK on basic L2/L3
routing workloads [3], concluding that VPP maintained higher
throughputs (up to 38x faster) than OVS-DPDK as the number
of concurrent flows increased. However, a deeper inspection of
the match/lookup algorithms in each reveals a more complex story.
OVS-DPDK uses a novel flow-caching strategy [27] to reduce lookup
times for complex multi-table lookups required for network virtu-
alization. This flow-caching strategy introduces an additional step
in packet processing that increases per-flow overheads for short,
single-table lookups (e.g. L2/L3 switching), but the authors of OVS
claim it improves throughputs for longer, multi-table tasks (e.g.
network virtualization). Hence, ‘bake-off’ style evaluations like the
2015 study fall short in two ways: (a) identifying that there are
algorithmic differences and (b) benchmarking the differences in
performance between the algorithms in isolation of other design
choices and optimizations within the switch implementations and
showing their strengths (e.g., multi-table lookups) and weaknesses
(e.g., large numbers of independent flows).

To do so, one can always detect algorithmic differences via a
detailed reading of the code, but this is a painstaking and slow
process (e.g., BESS has 23k lines of C++ code, OVS has 255k lines of
C code, and VPP has 312k lines of C code). Expecting an individual
developer to become intimately familiar with the codebases for
even just two switches is unreasonable. Furthermore, analyzing the
impact of the algorithm requires both an analysis of the algorithm’s
complexity and empirical performance (given, e.g., its amenity to
cache-tuning or optimizations for mice vs. elephant flows). This
empirical testing must be considered in isolation of the existing
performance optimizations in the switch (that is, independently of
the rest of the switch codebase).

OPEN QUESTION: Can we automate or aid the process of ana-
lyzing what algorithmic differences exist between switches, and to
what extent these differences impact various performance proper-
ties?

STRAWMAN: A growing body of research in the programming
languages community shows how to automatically extrapolate per-
formance characteristics (memory utilization, expected CPU usage)
from raw source code and a hardware specification [18]. Indeed,
some such tools are now practical — the Google Benchmark [16]
library can estimate an algorithm’s big-O when it is microbench-
marked. More recent work has moved in to the automatic com-
parison of different switches [8]; can such work be extended to
diagnosing performance differences in switches?

3.5 Challenge #5: Unoptimized Metrics

Performance studies typically focus on switch throughput and
latency - yet there are many other performance figures of merit for
telcos, datacenters, and other users. For example, jitter, loss rate,
and rule-update-time are far less frequently measured. The problem
that results is that metrics that aren’t measured can’t be optimized;
nor can switches compete over better performance with regard to
unmeasured metrics.

One reason jitter and loss are somewhat ignored is that it is diffi-
cult, if not impossible, to match the statistics reported by hardware
switches, which can guarantee consistent latencies (introducing lit-
tle to no jitter beyond that introduced by queueing) and can guaran-
tee no packet loss (once again, except for that introduced by queue-
ing). Software switches struggle to make such strong guarantees
because OS interrupts, multicore contention, and even branching
and varied compiler output lead to unpredictable timing for packet
processing — furthermore, software switches are often pushed to
implement more features than typically expected of a hardware
switch (e.g., NATing or adding virtual network headers).

The developers of BESS describe [25] one experience where
a large telco measured BESS for loss-free forwarding (following
guidelines in RFC 2544 [6]) and found the estimated loss-free for-
warding rate continuously decreased due to unexplained packet
losses lasting for tens or even hundreds of milliseconds. Modifying
the queue length did not eliminate the losses, nor did changing
core isolation, ACPI settings, turning off HyperThreading and turbo
boost, or eliminating all other processes from the machine. Upon
further investigation, they found the culprit: transparent hugepage
support in Linux, which would periodically be scheduled on a BESS

worker core, causing the queue to overflow. Disabling this feature
reduced the (non-overflow derived) losses to zero.

While the fix required no new algorithms or design choices, it
took significant developer time to resolve — and no one had paid
attention to the problem prior to the telco’s own measurements.

OPEN QUESTION: How can we allow switch users to standardize
what features matter in software switches so that switch developers
can optimize for them?

STRAWMAN: It may be time for standardized software switch
benchmarks. Many other domains have benefited from standardized
benchmarks, e.g., Acid testing [36] for web browsers, and machine
learning datasets for classifiers [7, 32]. There has been work in
benchmarking OpenFlow controllers [31], and switches that use P4
[11]. Benchmarks have many benefits beyond allowing switch users
to direct developer attention. Having switches run the same set of
benchmarks can prevent industrial evaluations from cherry-picking
or custom-designing experiments for marketing purposes: standard
workloads mean everyone runs the same experiments. Benchmarks
also allow ‘bake-off” style evaluations to direct performance tuning
so that researchers can focus instead on algorithmic and design
questions driving each metric’s results.

3.6 Challenge #6: Performance isn’t everything

In the previous three sections, we discussed challenges impacting
performance measurements (primarily of throughput). In practice,
network operators who deploy software switches also consider
many harder-to-quantify attributes such as feature completeness,
compatibility with external tools (like SDN controllers or monitor-
ing/statistics reporting suites), system flexibility, hardware com-
patibility, and ease of programming. Yet these harder-to-measure
attributes — such as feature completeness and compatibility with
external tools — are deployment obstacles.

Some of these attributes may be rightfully dismissed as simply
engineering time — and not needful of research time. For example,
feature completeness is often just a checklist of developer tasks to
complete. Most switches do not yet support NSH [29], but adding
this capability is merely a few hours of developer time in BESS,
OVS, or VPP. Nonetheless, we believe that system flexibility and
ease of programming stem from the system architecture (returning
to Pfaff’s taxonomy [26]).

System Flexibility: Features like NSH may be easily grafted onto
any switch architecture. However, consider the following two ex-
tensions:

e URL-based routing (i.e, L7 load balancing) does not appear
to be easy to integrate onto OVS/OVS-DPDK or Lagopus.
These are largely stateless switches, but URL-based routing
requires stateful flow reconstruction and TCP termination.
This extension can be implemented in VPP and BESS due to
their code-driven, stateful designs.

e Flow caching for table lookups, which is an important per-
formance optimization in OVS/OVS-DPDK and Lagopus,
would be difficult to graft onto BESS without introducing
monolithic and universal code, breaking the BESS design
pattern of small, independent module implementations.

Hence the lack of these two features is not a mere ‘todo’ for develop-
ers, but expose questions about the system architecture altogether
and whether or not the switch can or should support them at all.

OPEN QUESTION: Can we quantify or systematize system flexi-
bility? After conversations with software engineering researchers,
we believe this to be an open problem.

Ease of Programming: VPP, BESS, and OVS make dramatically
different choices about the API they expose to operators. OVS ex-
presses rules through match-action table entries. Although BESS
and VPP are both code-driven switches, BESS exposes an interface
for constructing pipelines using available modules, while VPP pro-
vides a command-line interface for configuring individual modules.
We have yet to see research discussing which APl is best. The status
queue for evaluating ease of programming in systems papers seems
to be measuring the number of lines of code in a switch configura-
tion program, despite the fact that ‘one-liner’ programs are often
considered a mark of clever, non-intuitive thought!

OPEN QUESTION: Can we quantify or systematize ease of switch
programming?

4 DISCUSSION

This concludes our presentation of our evaluation challenges. We
remain unprepared to answer our titular claim (Is a comprehensive,
unbiased evaluation ‘hard or hopeless?’) Nonetheless, our attempts
to understand why our evaluations have failed have led us to realize
that how to design a strong evaluation is as much of a research
question as whether or not any given switch architecture wins out.

In addition to our ‘open questions’ above, we conclude upon
two meta-questions. First, which of these challenges apply to other
system evaluations? For example, one can imagine that identifying
and isolating implementation differences (§3.4) is a challenge that
may also impact databases or analytics frameworks. Second, which
challenges don’t seem to apply to some other systems and why? For
example, many distributed systems papers often appear to provide
analytical results that are independent of engineering challenges
such as system tuning, §3.1, instead focusing purely on algorithms.
Why should software switches be any different than other software
systems?

REFERENCES

[1] Open Contrail. http://www.opencontrail.org/.

[2] Open vSwitch with DPDK. https://software.intel.com/en-us/articles/
open-vswitch-with-dpdk-overview.

[3] Validating Cisco’s NFV Infrastructure Pt. 1. http://www.lightreading.com/nfv/

nfv-tests-and-trials/validating- ciscos-nfv-infrastructure-pt-1/d/d-id/718684?

page_number=38.

] Wikipedia: Internet mix. https://en.wikipedia.org/wiki/Internet_Mix.

[5] A.Bianco, R. Birke, L. Giraudo, and M. Palacin. OpenFlow Switching: Data Plane
Performance. In 2010 IEEE International Conference on Communications, pages
1-5, May 2010.

[6] S.Bradner and J. McQuaid. Benchmarking Methodology for Network Intercon-
nect Devices. RFC 2455.

[7] G.Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym, 2016.

[8] E. Cigek, G. Barthe, M. Gaboardi, D. Garg, and J. Hoffmann. Relational cost
analysis. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, pages 316-329, New York, NY, USA, 2017.

ACM.
[9] E. Chaudron. Measuring and comparing Open vSwitch
performance. https://developers.redhat.com/blog/2017/06/05/

measuring-and-comparing-open-vswitch-performance/, June 2017.

(10]

[11

(12]

(13]

(18]

[19]

)
=

[31

[32

[33

[34

[36

V. Danen. Understanding the basics of Linux routing. http://www.techrepublic.
com/article/understand- the-basics-of-linux-routing/, 2001.

H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford, R. Soulé, and
H. Weatherspoon. Whippersnapper: A p4 language benchmark suite. In Proceed-
ings of the Symposium on SDN Research, pages 95-101. ACM, 2017.

Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan. High performance net-
work virtualization with sr-iov. Journal of Parallel and Distributed Computing,
72(11):1471-1480, 2012.

P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Performance characteristics of
virtual switching. In 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet), pages 120-125, Oct 2014.

FD.io. VPP: Performance Expectations. https://wiki.fd.io/view/VPP/What is_
VPP%3F#Performance_Expectations.

FD.io VPP. https://wiki.fd.io/view/VPP.

Google. Google benchmark. https://github.com/google/benchmark.

S.Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy. Softnic: A software
nic to augment hardware. Dept. EECS, Univ. California, Berkeley, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2015-155, 2015.

J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized Resource
Analysis. In 38th Symp. on Principles of Prog. Langs. (POPL’11), pages 357-370,
2011.

R. Kawashima, S. Muramatsu, H. Nakayama, T. Hayashi, and H. Matsuo. A
Host-Based Performance Comparison of 40G NFV Environments Focusing on
Packet Processing Architectures and Virtual Switches. In 2016 Fifth European
Workshop on Software-Defined Networks (EWSDN), pages 19-24, Oct 2016.

J. Kim, S. Huh, K. Jang, K. Park, and S. Moon. The power of batching in the click
modular router. In Proceedings of the Asia-Pacific Workshop on Systems, APSYS
’12, pages 14:1-14:6, New York, NY, USA, 2012. ACM.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular
Router. ACM Trans. Comput. Syst., 18(3):263-297, Aug. 2000.

S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood,
M. Arumaithurai, and X. Fu. Nfvnice: Dynamic backpressure and scheduling for
nfv service chains. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 71-84. ACM, 2017.

P. E. McKenney and J. D. Slingwine. Read-copy-update: Using execution history
to solve concurrency problems. In Parallel and Distributed Computing and Systems,
pages 509-518, Oct. 1998.

L. Molnar, G. Pongracz, G. Enyedi, Z. L. Kis, L. Csikor, F. Juhasz, A. Kérosi, and
G. Rétvari. Dataplane Specialization for High-performance OpenFlow Software
Switching. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM °16,
pages 539-552. ACM, 2016.

Nefeli Networks. Private commn., 2017.

B. Pfaff. Converging Approaches in Software Switches. Keynote Speech, SIGOPS
Asia-Pacific Workshop on Systems (APSys), June 2016.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado. The Design and Implementation
of Open vSwitch. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 117-130, Oakland, CA, 2015. USENIX Associa-
tion.

PR Newswire. The SDN, NFV & Network Virtualization Ecosystem: 2016 - 2030.
http://prn.to/1Tw0dJO.

P. Quinn, U. Elzur, and C. Pignatero. Network Services Header. IETF Draft
draft-ietf-sfc-nsh-18, July 2017.

R. Rahimi, M. Veeraraghavan, Y. Nakajima, H. Takahashi, S. Okamoto, and N. Ya-
manaka. A high-performance openflow software switch. In High Performance
Switching and Routing (HPSR), 2016 IEEE 17th International Conference on, pages
93-99. IEEE, 2016.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, A. W. Moore, et al. Oflops: An open
framework for openflow switch evaluation. In PAM, volume 7192, pages 85-95.
Springer, 2012.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211-252, 2015.

J. Scheurich and M. Gray. OvS-DPDK performance optimizations to meet Telco
needs. Open vSwitch Fall 2016 Conference.

M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and J. Rexford.
Pisces: A programmable, protocol-independent software switch. In Proceedings
of the 2016 conference on ACM SIGCOMM 2016 Conference, pages 525-538. ACM,
2016.

V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space
search. In Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SSIGCOMM 99, pages 135-146, New
York, NY, USA, 1999. ACM.

Web Standards Project. Acid Tests for Web Browsers. http://www.acidtests.org/.

http://www.opencontrail.org/
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684?page_number=8
http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684?page_number=8
http://www.lightreading.com/nfv/nfv-tests-and-trials/validating-ciscos-nfv-infrastructure-pt-1/d/d-id/718684?page_number=8
https://en.wikipedia.org/wiki/Internet_Mix
https://developers.redhat.com/blog/2017/06/05/measuring-and-comparing-open-vswitch-performance/
https://developers.redhat.com/blog/2017/06/05/measuring-and-comparing-open-vswitch-performance/
http://www.techrepublic.com/article/understand-the-basics-of-linux-routing/
http://www.techrepublic.com/article/understand-the-basics-of-linux-routing/
https://wiki.fd.io/view/VPP/What_is_VPP%3F#Performance_Expectations
https://wiki.fd.io/view/VPP/What_is_VPP%3F#Performance_Expectations
https://wiki.fd.io/view/VPP
https://github.com/google/benchmark
http://prn.to/1Tw0dJO
http://www.acidtests.org/

	Abstract
	1 Introduction
	2 Background
	3 Challenges
	3.1 Challenge #1: System Configuration
	3.2 Challenge #2: Performance Stability
	3.3 Challenge #3: Does Architecture Matter?
	3.4 Challenge #4: Identifying and Isolating Implementation Differences
	3.5 Challenge #5: Unoptimized Metrics
	3.6 Challenge #6: Performance isn't everything

	4 Discussion
	References

