
How to Improve your Network Performance by
Asking your Provider for Worse Service

Radhika Mittal
UC Berkeley

radhika@eecs.berkeley.edu

Justine Sherry
UC Berkeley

justine@eecs.berkeley.edu

Sylvia Ratnasamy
UC Berkeley

sylvia@eecs.berkeley.edu

Scott Shenker
UC Berkeley and ICSI
shenker@icsi.berkeley.edu

ABSTRACT
TCP’s congestion control is deliberately “cautious”, avoid-
ing overloads by starting with a small initial window and
then iteratively ramping up. As a result, it often takes flows
several round-trip times to fully utilize the available band-
width. In this paper we propose using several levels of lower
priority service and a modified TCP behavior to achieve sig-
nificantly improved flow completion times while preserving
fairness.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design, Experimentation, Performance

1. INTRODUCTION
We begin this paper by noting two facts about networks.

First, modern ISPs run their networks at relatively low uti-
lization [8, 10, 12]. This is not because ISPs are incapable of
achieving higher utilization, but because their network must
be prepared for link failures which could, at any time, reduce
their available capacity by a significant fraction. Thus, most
ISP networks are engineered with substantial headroom, so
that ISPs can continue to deliver high-quality service even
after failures.

Second, TCP congestion control is designed to be cau-
tious, starting from a small window size and then increas-
ing every round-trip time until the flow starts experiencing
packet drops. The need for fairness requires that all flows
follow the same congestion-control behavior, rather than let-
ting some be cautious and others aggressive. Caution, rather

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.
Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

than aggression, is the better choice for a uniform behavior
because it can more easily cope with a heavily overloaded
network; if every flow started out aggressively, the network
could easily reach a congestion-collapsed state with a per-
sistently high packet-drop rate.

These decisions – underloaded networks and cautious
congestion control – were arrived at independently, but inter-
act counter-productively. When the network is underloaded,
flows will rarely hit congestion at lower speeds. However,
the caution of today’s congestion control algorithms requires
that flows spend significant time ramping up rather than
more aggressively assuming that more bandwidth is avail-
able. In recent years there have been calls to increase TCP’s
initial window size to alleviate this problem but, as we shall
see later in the paper, this approach brings only limited ben-
efits.

In this paper we propose a new approach called recur-
sively cautious congestion control (RC3) that retains the ad-
vantages of caution while enabling it to efficiently utilize
available bandwidth. The idea builds on a perverse notion of
quality-of-service, called WQoS, in which we assume ISPs
are willing to offer worse service if certain ToS bits are set
in the packet header (the mechanisms for doing so – priority
queues, are present in almost all currently deployed routers).
While traditional calls for QoS – in which better service
is available at a higher price – have foundered on worries
about equity (should good Internet service only be available
to those who can pay the price?), pricing mechanisms (how
do you extract payments for the better service?), and peering
(how do peering arrangements cope with these higher-priced
classes of service?), in our proposal we are only asking ISPs
to make several worse classes of service available that would
be treated as regular traffic for the purposes of charging and
peering. Thus, we see fewer institutional barriers to deploy-
ing WQoS. Upgrading an operational network is a signifi-
cant undertaking, and we do not make this proposal lightly,
but our point is that many of the fundamental sources of re-
sistance to traditional QoS do not apply to WQoS.

The RC3 approach is quite simple. RC3 runs, at the high-
est priority, the same basic congestion control algorithm as
normal TCP. However, it also runs congestion control algo-
rithms at each of the k worse levels of service; each of these

1

0! 1! 3!2! N!….!....! N-40!….!N-440!

Priority 1!Priority 0! Priority 2!Priority 3!

!"#$"%&'(%)$*)%+$,"-$"%&'(%)$*)%+$

Figure 1: Packet priority assignments.

levels sends only a fixed number of packets, with exponen-
tially larger numbers at lower priority levels. As a result,
all RC3 flows compete fairly at every priority level, and the
fact that the highest priority level uses the traditional TCP al-
gorithms ensures that RC3 does not increase the chances of
congestion collapse. Moreover, RC3 can immediately “fill
the pipe" with packets (assuming there are enough priority
levels), so it can leverage the bandwidth available in under-
utilized networks. In simulations that we describe later in
the paper, we find that the flow completion times [6] improve
by 30-80% in most settings we investigated. We also com-
pare our scheme against various other approaches, such as
increasing the initial window size, giving some flows higher
priority, and explicit rate negotiation.

The rest of the paper proceeds as follows. In §2, we de-
scribe the RC3 design in detail. In §3, we develop a mathe-
matical model to predict the performance gains due to RC3;
we validate these results via simulation and compare RC3 to
other approaches in §4. In §5, we discuss RC3’s deployment
and future, and in §6 we present related work.

2. DESIGN
We now discuss RC3’s design in detail.

2.1 RC3 in Implementation
RC3 runs two parallel control loops: one transmitting at

normal priority and obeying the cautious transmission rate
of traditional TCP, and a second “recursive low priority”
(RLP) control loop keeping the link saturated with low pri-
ority packets.

In the primary control loop, TCP proceeds as normal,
sending packets in order from index 0 in the byte stream,
starting with slow-start and then progressing to normal
congestion-avoidance behavior after the first packet loss.
The packets sent by this default TCP are transmitted at ‘nor-
mal’ priority – priority 0 (with lower priorities denoted by
higher numbers).

In the RLP control loop, the sender transmits additional
traffic from the same buffer as TCP to the NIC1. To minimize
the overlap between the data sent by the two contol loops, the
RLP sender starts from the very last byte in the buffer rather
than the first, and works its way towards the beginning of
the buffer, as illustrated in Figure 1. RLP packets are sent
at low priorities (priority 1 or greater): the first 40 packets
(from right) are sent at priority 1; the next 400 are sent at
priority 2; the next 4000 at priority 3, and so on. 2 The
1As end-hosts support priority queueing discipline, this traffic will
never pre-empt the primary TCP traffic.
2RC3 requires the exponentially spaced priority levels to accomo-
date large flows within feasible number of priority bits.

Rate decreases as TCP !
claims more bandwidth!

TCP achieves 100%
bottleneck link util. in
congestion avoidance!

Line Rate!

BW!

If bottleneck = edge, RLP traffic
is blocked once TCP reaches

congestion avoidance.!

Figure 2: Congestion window and throughput with RC3.

RLP traffic can only be transmitted when the TCP loop is
not transmitting, so its transmission rate is the NIC capacity
minus the normal TCP transmission rate.

RC3 enables TCP selective ACK (SACK) to keep track
of which of low priority (and normal priority) packets have
been accepted at the receiver. When ACKs are received for
low priority packets, no new traffic is sent and no windows
are adjusted. The RLP control loop transmits each low prior-
ity packet once and once only; there are no retransmissions.
The RLP loop starts sending packets to the NIC as soon as
the TCP send buffer is populated with new packets, termi-
nating when its ‘last byte sent’ crosses with the TCP loop’s
‘last byte sent’. Performance gains from RC3 are seen only
during the slow-start phase; for long flows where TCP en-
ters congestion avoidance, TCP will keep the network maxi-
mally utilized with priority 0 traffic. If the bottleneck link is
the edge link, high priority packets will pre-empt any pack-
ets sourced by the RLP directly at the end host NIC; other-
wise the low priority packets will be dropped elsewhere in
the network.

Figure 2 illustrates how the two loops interact: as the TCP
sender ramps up, the RLP traffic has less and less ‘free’
bandwidth to take advantage of, until it eventually is fully
blocked by the TCP traffic. Since the RLP loop does not
perform retransmissions, it can leave behind ‘holes’ of pack-
ets which have been transmitted (at low priority) but never
ACKed. Because RC3 enables SACK, the sender knows ex-
actly which segments are missing and the primary control
loop retransmits only those segments.3 Once the TCP ‘last
byte sent’ crosses into traffic that has already been transmit-
ted by the RLP loop, it uses this information to retransmit
the missing segments and ensure that all packets have been
received. We walk through transmission of a flow with such
a ‘hole’ in the following subsection.

2.2 Example
We now walk through a toy example of a flow with

66 packets transmitted over a link with an edge-limited
bandwidth×delay product of 50 packets. Figure 3 illustrates
our example.

In the first RTT, TCP sends the first 4 packets at priority 0
3Enabling SACK allows fast recovery for dropped low priorty
packets. However, RC3 still provides significant performance gains
when SACK is disabled, despite some redundant retransmissions.

2

0"0" 0"0" 2"2" 2"2" 2"2" …1" 1" 1"

0"0" 0"0" 0"0" 0"0" 2"2" 2"2" x"x" …

x"x" …

…

1st"RTT"

2nd"RTT"

3rd"RTT"

4th"RTT"(Complete)"

2"2" 2" 2"

Figure 3: Example RC3 transmission from §2.2.

(from left); after these high priority packets are transmitted,
the RLP loop sends the remaining 62 packets to the NIC – 40
packets at priority 1 and 22 packets at priority 2 (from right),
of which 46 packets are transmitted by the NIC (filling up the
entire BW×RTT product of 50 packets per RTT).

The 21st and 22nd packets from the left (marked as Xs),
sent out at priority 2, are dropped. Thus, in the second RTT,
ACKs are received for all packets transmitted at priority 0
and for all but packets 21 and 22 sent at lower priorities.
The TCP control loop doubles its window and transmits an
additional 8 packets; the RLP sender ignores the lost pack-
ets and the remaining packets are transmitted by the NIC at
priority 2.

In the third RTT, the sender receives ACKs for all packets
transmitted in the second RTT and TCP continues to expand
its window to 16 under slow start. At this point, the TCP
loop sees that all packets except 21st and 22nd have been
acked. It, therefore, transmits only these two packets.

Finally, in the fourth RTT the sender receives ACKs for
the 21st and 22nd packets as well. As all data acknowledge-
ments have now been received by the sender, the connection
completes.

3. PERFORMANCE MODEL
Having described RC3 in §2, we now model our expected

improvements in Flow Completion Time (FCT) for a TCP
flow using RC3 as compared to a basic TCP implementation.
We quantify gains as ((FCT with TCP) - (FCT with RC3)) /
(FCT with TCP) – i.e. the percentage reduction in FCT. Our
model is very loose and ignores issues of queuing, packet
drops, or the interaction between flows. Nonetheless, this
model does help clarify some of the basic issues and, in the
following section (§4), we validate these expected gains via
simulation.

Basic Model: Let BW be the capacity of the bottleneck link
a flow traverses, and u be the utilization level of that link. We
define A, the available capacity remaining in the bottleneck
link as A = (1 − u) × BW . Since RC3 utilizes all of the
available capacity, a simplified expectation for FCTs under
RC3 is RTT + N

A , where RTT is the round trip time and N
is the flow size.

TCP does not utilize all available capacity during its slow
start phase; it is only once TCP reaches congestion avoid-
ance that TCP maintains 100% utilization of the available
capacity. The slow start phase, during which TCP leaves the

(a) Flow Size (N)
!" #$%&&"

%
 F

C
T

 R
e

d
u

ct
io

n
!

(b)

%
 F

C
T

 R
e

d
u

ct
io

n
!

Flow Size (N)
!" #$%&&"!'"

Figure 4: Performance gains as predicted by a simple
model for (a) RC3 and (b) an increased initial congestion
window.

link partially idle, lasts log(min(N,A × RTT)/i) RTTs,
with i being the initial congestion window of TCP. This is
the interval during which RC3 can benefit TCP.

In Figure 4(a), we show our expected gains according to
our model. Recall that i denotes the initial congestion win-
dow under TCP. For flow sizes N < i, RC3 provides no
gains over a baseline TCP implementation, as in both sce-
narios the flow would complete in RTT + N

A . For flow sizes
i < N < A × RTT , the flow completes in 1 RTT with
RC3, and multiple round trip times (log(N/i)) with basic
TCP in slow start. Consequently, the reduction in FCT in-
creases with N over this interval.

Once flow sizes reach N > A×RTT , basic TCP reaches
a state where it can ensure 100% link utilization. After this
point, the improvements from RC3 become a smaller frac-
tion of overall FCT with increasingly large flows; this reduc-
tion roughly follows log(A×RTT/i)×RTT×A

N (ignoring a few
constants in the denominator).

Parameter Sensitivity: The above model illustrates that
improvements in FCTs due to RC3 are dependent primar-
ily on three parameters: the flow size (N), the effective
bandwidth×delay product (A × RTT), and the choice of
the initial congestion window (i). Peak improvements are
observed when N is close to the A × RTT , because un-
der these conditions the flow completes in 1 RTT with RC3
and spends its entire life time in slow start without RC3.
When the delay-bandwidth product increases, both the opti-
mal flow size (for performance improvement) increases, and
the maximum improvement increases.

Adjusting i: There are several proposals [4, 7] to ad-
just the default initial congestion window in TCP to 10
or even more packets. Assume we adjusted a basic TCP
implementation to use a new value, some i′ as its initial

3

Figure 5: Reduction in FCT as predicted by model vs
simulations.

congestion window. Figure 4(b) illustrates the gains from
such an i′ (compare to RC3 in Figure 4(a)). When i′ in-
creases, the amount of time spent in slow start decreases with
log(min(N,A×RTT)/i′)×RTT . Flows of up to i′ pack-
ets complete in a single RTT, but unless i′ = A × RTT
(hundreds of packets for today’s WAN connections), adjust-
ing the initial congestion window will always underperform
when compared to RC3. However, there is good reason not
to adjust i′ to A×RTT : without the use of low priorities, as
in RC3, sending a large amount of traffic without cautious
probing can lead to an increase in congestion and overall
worse performance. Our model does not capture the impact
of queueing and drops, however, in §4.2 we show via sim-
ulation how increasing the initial congestion window to 10
and 50 packets penalizes small flows in the network.

4. EXPERIMENTAL RESULTS
To validate the expected gains according to our theoreti-

cal analysis (§3), we now evaluate our proposal in simulation
using the NS3 network simulator [1]. Our simulation topol-
ogy models the Internet-2 network consisting of ten routers,
each attached to ten end hosts, with 1Gbps bottleneck band-
width and 40ms average RTT. Our base simulations are run
with 30% average link utilization [8, 10, 12].

The traffic matrix is generated as follows: each end host
generates flows with Poisson arrivals. Flow sizes are drawn
from an empirical traffic distribution [3]; the Poisson arrival
parameter is used to adjust the total load. Each flow is ran-
domly sent to one of the other end hosts. Core link capacities
are set to ensure the required average link utilization.

For most experiments we present RC3’s performance rel-
ative to a baseline TCP implementation. Our baseline TCP
implementation is TCP New Reno [13] with SACK en-
abled [11, 5] and an initial congestion window of 4 [4];
maximum segment size is set to 1460 bytes while slow start
threshold and advertised received window are set to infinity.
Our RC3 implementation uses the same TCP code as above,
with low priority traffic generated as described in §2. All
senders transmit using RC3 unless otherwise noted.

For each experiment, we display a bar graph of the av-
erage reduction in FCT for each flow size in our distribu-
tion. We also show tables with the reduction in FCT aver-
aged over all flows; we display both an unweighted average

1460
2920

4380
7300

10220
58400

105120
200020

389820

1733020

3076220

Flow Size (bytes)

0

10

20

30

40

50

60

70

80

90

%
 R

e
d
u
ct

io
n
 i
n
 a

v
g
 F

C
T

10% utilization

30% utilization

50% utilization

Average
Over
Flows

Average
Over
Bytes

10% Load
Regular FCT (s) 0.125 0.423

RC3 FCT (s) 0.068 0.091
% Reduction 45.57 78.36

30% Load
Regular FCT (s) 0.135 0.443

RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

50% Load
Regular FCT (s) 0.15 0.498

RC3 FCT (s) 0.088 0.176
% Reduction 41.44 64.88

Figure 6: Reduction in FCT with load variation.

(average over flows) and an average weighted by flow size
(average over bytes). Our experiments fall into one of two
categories. In §4.1, we evaluate the performance of RC3
as compared to TCP New Reno under varying parameters
for bandwidth×delay product, link load, and loss rate. In
§4.2, we compare RC3 to other proposals to improve per-
formance: increasing the initial congestion window of TCP
New Reno [7], using high priorities for ‘important’ flows
(QoS), and using RCP [6].

4.1 Baseline Performance & Theoretical
Model

We now test RC3’s performance in simulation under vary-
ing parameters for link load, bandwidth-delay product, and
loss rate.

Validating the Model: Figure 5 compares the gains pre-
dicted by our model (§3) with gains observed in simulation
(averaged over 10 runs). The data displayed is for a 1Gbps
bottleneck capacity, 40ms average RTT, and 30% load and
is representative of other parameters we simulated. For large
flows, the simulated gains are slightly lower than predicted;
this is the result of queueing delay which is not included in
our model. For small flows – four packets or fewer – we
actually see actually see better results than predicted by the
model. This is due to large flows completing sooner than
in the base TCP scenario, leaving the high priority network
queues more frequently vacant and thus decreasing average
queueing delay for short flows. Despite these variations, the
simulated and modeled results track each other quite closely.

Link Load: Figure 6 shows FCT performance gains com-
paring RC3 to the base TCP under uniform link load of 10%,
30%, or 50%. The bandwidth-delay product is fixed at 5MB
across all experiments. As expected, performance improve-
ments decrease for higher average link utilization. For large

4

1460
2920

4380
7300

10220
58400

105120
200020

389820

1733020

3076220

Flow Size (bytes)

0

10

20

30

40

50

60

70

80

90

%
 R

e
d
u
ct

io
n
 i
n
 a

v
g
 F

C
T

100Mbps x 40ms

100Mbps x 400ms

1Gbps x 40ms

1Gbps x 400ms

Average
Over
Flows

Average
Over
Bytes

100Mbps Bottleneck
40ms avg. RTT

Regular FCT (s) 0.167 0.691
RC3 FCT (s) 0.11 0.442
% Reduction 33.98 36.05

100Mbps Bottleneck
400ms avg. RTT

Regular FCT (s) 0.948 3.501
RC3 FCT (s) 0.567 0.783
% Reduction 40.29 77.62

1Gbps Bottleneck
40ms avg. RTT

Regular FCT (s) 0.135 0.443
RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

1Gbps Bottleneck
400ms avg. RTT

Regular FCT (s) 0.971 3.59
RC3 FCT (s) 0.558 0.569
% Reduction 42.45 84.17

Figure 7: Reduction in average FCT with variation in
bandwidth×delay product.

flows, this follows from the fact that the available capacity
A = (1 − u) × BW , reduces with increase in utilization u.
Thus, there is less spare capacity to be taken advantage of in
scenarios with higher link load. However, for smaller flows,
we actually see the opposite trend. This is once again due
to reduced high priority congestion, as large flows complete
sooner and the packets they do transmit are mostly trans-
mitted at lower priorities than the packets from the smaller
flows.

Bandwidth×Delay: Figure 7 shows the FCT reduction due
to RC3 at varying delay-bandwidth products. In this ex-
periment we adjusted RTTs and bandwidth capacities to
achieve a RTT×BW product of 500KB (100Mbps×40ms),
5MB (1Gbps×40ms and 100Mbps×400ms) and 50MB
(1Gbps×400ms). As discussed in §3, the performance im-
provement increases with increasing RTT×BW, as the peak
of the hill shifts towards right. Note that since RTT×BW
products are expected to increase with time – link capacities
increasing over time while the delay is essentially fixed due
to the speed of light – RC3’s performance gains as compared
to baseline TCP will likely improve with time.

Loss Rate: All of our experiments simulate scenarios where
the sole source of loss is congestion from our simulated traf-
fic. To test RC3’s sensitivity to background loss, due to wire-
less or other factors, we repeated our simulations at 30%
load with 1Gbps edge links, with random drops introduced
for 0.01% or 0.1% of packets. With 0.01% loss, the average
FCT using the baseline TCP increases from 0.135 seconds to
over 0.16 seconds; with 0.1% loss, the average FCT further
increases to 0.28 seconds. In contrast, using RC3 the average
FCT with 0.01% loss is only 0.08 seconds (50% reduction),

and with 0.1% loss, the average FCT is just over 0.10 sec-
onds (63% reduction). RC3 provides even stronger gains in
such high loss scenarios because each packet essentially has
two chances at transmission. Further, since the RLP loop ig-
nores ACKs and losses, low priority losses do not slow the
sending rate.

4.2 RC3 in Comparison
We now compare the performance gains of RC3 against

three other proposals to reduce TCP flow completion times:
increasing TCP’s initial congestion window (InitCwnd), as-
signing critical flows to high priority, and using RCP.

Increasing InitCwnd: Figure 4.2(a) compares the perfor-
mance gains obtained from RC3 with the performance gains
from increasing the baseline TCP’s initial congestion win-
dow to 10 and 50. For most flow sizes, especially larger
flows, RC3 provides stronger improvements than simply in-
creasing the initial congestion window. When averaging
across all flows, RC3 provides a 44% reduction in FCT
whereas increasing the InitCwnd to 10 reduces the FCT by
only 13% and further increasing it to 50 reduces the FCT
by just 24%. Further, for small flow sizes (< 4 packets),
increasing the InitCwnd actually introduces a performance
penalty due to increased queueing delays. RC3 never makes
flows do worse than they would have under traditional TCP.
These results confirm our expectations from §3.

Traditional QoS: An alternate technique to improve FCTs
is to designate certain flows as ‘critical’ and send those flows
using unmodified TCP, but at higher priority. We annotated
10% of flows as ‘critical’; performance results for the crit-
ical flows alone are shown in Fig. 4.2(b). For the ‘critical’
10% of flows, while the average FCT reduces from 0.126
seconds to 0.119 seconds; non-critical flows suffered a very
slight (<2%) penalty. When we repeated the experiment, but
assigning the critical flows to use RC3, the average FCT ‘re-
duced from .126 seconds to 0.078 seconds, as shown in Fig-
ure 4.2(b) . Furthermore, non-critical flows showed a slight
(<1%) improvement. This suggests that it is better to be able
to send an unrestricted amount of traffic, albeit at low prior-
ity, than to send at high priority at a rate limited by TCP.

RCP: Finally, we compare against RCP, an alternative trans-
port protocol to TCP. With RCP, routers calculate average
fair rate and signal this to flows; this allows flows to start
transmitting at an explicitly allocated rate from the first
(post-handshake) RTT, overcoming TCP’s slow start penalty.
We show the performance improvement for RCP and RC3
in Fig. 4.2(c). While for large flows, the two schemes are
roughly neck-to-neck, RCP actually imposes a penalty for
the very smallest (1-4 packet) flows, in part because RCP’s
explicit rate allocation enforces pacing of packets accord-
ing to the assigned rate, whereas with traditional TCP (and
RC3), all packets are transmitted back to back. These results
show that RC3 can provide FCTs which are usually compa-

5

1460
2920

4380
7300

10220
58400

105120
200020

389820

1733020

3076220

Flow Size (bytes)

10

0

10

20

30

40

50

60

70

80

%
 R

e
d
u
ct

io
n
 i
n
 a

v
e
ra

g
e
 F

C
T InitCWnd = 10

InitCWnd = 50

RC3

1460
2920

4380
7300

10220
58400

105120
200020

389820

1733020

3076220

Flow Size (bytes)

0

10

20

30

40

50

60

70

80

%
 R

e
d
u
ct

io
n
 i
n
 a

v
e
ra

g
e
 F

C
T Higher priority

RC3

1460
2920

4380
7300

10220
58400

105120
200020

389820

1733020

3076220

Flow Size (bytes)

20

0

20

40

60

80

%
 R

e
d
u
ct

io
n
 i
n
 a

v
e
ra

g
e
 F

C
T RCP

RC3

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.135 0.443

i = 10 FCT 0.117 0.362
% 13.21 17.87

i = 50 FCT 0.102 0.272
% 24.33 38.24

RC3 FCT 0.076 0.114
% 43.54 74.35

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.126 0.435

QoS FCT 0.119 0.411
% 5.33 5.64

RC3 FCT 0.078 0.12
% 38.31 72.43

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.135 0.443

RCP FCT 0.088 0.117
% 33.86 73.58

RC3 FCT 0.076 0.114
% 43.54 74.35

(a) Increased InitCwnd (b) Traditional QoS (c) RCP

Figure 8: RC3 as compared to three alternatives. All FCTs are reported in seconds; % shows percent reduction from
baseline. All experiments performed with 1Gbps bottleneck and 30% load.

rable or even better than those with RCP. Further, as RC3
can be deployed on legacy hardware and is friendly with ex-
isting TCP flows, it is a more deployable path to comparable
performance improvements.

5. DISCUSSION
Before concluding, we now briefly discuss RC3’s deploy-

ability, applicability to non-WAN environments, and com-
patibility with current technology trends.

Deployment: For RC3 to be widely used requires ISPs to
opt-in by enabling the priority queueing that already exists
in their routers. As discussed in the introduction, we believe
that giving worse service, rather than better service, for these
low priority packets alleviates some of the concerns that has
made QoS so hard to offer (in the wide area) today. WQoS
is safe and backwards compatible because regular traffic will
never be penalized and pricing remains unaffected. More-
over, since RC3 makes more efficient use of bandwidth, it
allows providers to run their networks at higher utilization,
while still providing good performance, resulting in higher
return in investment for their network provisioning. We also
believe that movement of services to the edge of the net-
work, so that paths to the most popular site traverse only a
few ISPs, may make it easier for partial deployment of RC3
to bring end-to-end benefits to users.

Datacenters and Elsewhere: As we’ve shown via model
(§3) and simulation (§4), the benefits of RC3 are strongest
in networks with large RTT×BW products. Today’s data-
center networks typically do not fit this description: with
microsecond latencies, bandwidth×delay products are small
and thus flows today can very quickly reach 100% link
utilization. Nevertheless, given increasing bandwidth,
bandwidth×delay products may not remain small forever. In

simulations on a fat-tree datacenter topology with (futuris-
tic) 100Gbps links, we observed average FCT improvements
of 45% when averaged over flows, and 66% when averaged
over bytes. Thus, while RC3 is not a good fit for datacenters
today, it may be in the future.

Future: Outside of the datacenter, bandwidth×delay prod-
ucts are already large – and increasing. While increasing
TCP’s initial congestion window may mitigate the problem
in the short term, given the inevitable expansion of available
bandwidth, the problem will return again and again with any
new choice of new initial congestion window. Our solution,
while posing some deployment hurdles, has the advantage of
being able to handle future speeds without further modifica-
tions.

6. RELATED WORK
In §4 we compare RC3 directly against RCP, increasing

TCP’s initial congestion window, and traditional QoS. We
now present other related work not discussed previously.

TCP Cubic [9] and Compound TCP [14] are deployed in
Linux and Windows respectively. Although they use alter-
native congestion avoidance algorithms to TCP New Reno,
their slow-start behaviors still leave substantial wasted ca-
pacity during the first few RTTs – consequently, TCP Cubic
or Compound TCP could just as easily be used in RC3’s pri-
mary control loop as TCP New Reno.

PFabric [2] is a recent proposal for datacenters that sim-
ilar to RC3 uses many layers of priorities and ensures high
utilization. However, PFabric is targeted exclusively at the
datacenter environment, and would not work in the wide-
area case. Our work is targeted at the wide-area case, and
may only be relevant for datacenters when their speeds in-
crease.

6

7. REFERENCES
[1] ns-3. http://www.nsnam.org.
[2] M. Alizadeh, S. Yang, S. Katti, N. McKeown,

B. Prabhakar, and S. Shenker. Deconstructing
Datacenter Packet Transport. In Proc. ACM Workshop
on Hot Topics in Networks (HotNets), 2012.

[3] M. Allman. Comments on bufferbloat. SIGCOMM
Comput. Commun. Rev., 2012.

[4] M. Allman, S. Floyd, and C. Partridge. Increasing
TCP’s Initial Window. RFC 3390.

[5] E. Blanton, M. Allman, K. Fall, and L. Wang. A
Conservative Selective Acknowledgment
(SACK)-based Loss Recovery Algorithm for TCP.
RFC 3517.

[6] N. Dukkipati and N. McKeown. Why
Flow-Completion Time is the Right Metric for
Congestion Control. ACM SIGCOMM Computer
Communication Review, 36(1):59–62, Jan. 2006.

[7] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert,
A. Agarwal, A. Jain, and N. Sutin. An Argument for
Increasing TCP’s Initial Congestion Window. ACM
SIGCOMM Computer Communication Review, 40(3),
June 2010.

[8] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan,
D. Moll, R. Rockell, T. Seely, and C. Diot.
Packet-level traffic measurements from the sprint ip
backbone. IEEE Network, 17:6–16, 2003.

[9] S. Ha, I. Rhee, and L. Xu. CUBIC: a New
TCP-friendly High-Speed TCP Variant. ACM SIGOPS
Operating System Review, 42(5):64–74, July 2008.

[10] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot. An
approach to alleviate link overload as observed on an
ip backbone, 2003.

[11] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. RFC 2018.

[12] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy,
and D. Wetherall. Reducing network energy
consumption via sleeping and rate-adaptation.
NSDI’08, pages 323–336. USENIX Association.

[13] Sally Floyd and T. Henderson. The NewReno
Modification to TCP’s Fast Recovery Algorithm. RFC
2582.

[14] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A
Compound TCP Approach for High-Speed and Long
Distance Networks. In IEEE INFOCOM, 2006.

7

