
Recursively Cautious Congestion Control

Radhika Mittal∗ Justine Sherry∗ Sylvia Ratnasamy∗ Scott Shenker∗†

∗UC Berkeley †ICSI

Abstract
TCP’s congestion control is deliberately cautious, avoid-
ing network overloads by starting with a small initial
window and then iteratively ramping up. As a result,
it often takes flows several round-trip times to fully uti-
lize the available bandwidth. In this paper we propose
RC3, a technique to quickly take advantage of available
capacity from the very first RTT. RC3 uses several lev-
els of lower priority service and a modified TCP behav-
ior to achieve near-optimal throughputs while preserving
TCP-friendliness and fairness. We implement RC3 in the
Linux kernel and in NS-3. In common wide-area scenar-
ios, RC3 results in over 40% reduction in average flow
completion times, with strongest improvements – more
than 70% reduction in flow completion time – seen in
medium to large sized (100KB - 3MB) flows.

1 Introduction
We begin this paper by noting two facts about networks.
First, modern ISPs run their networks at a relatively low
utilization [18, 21, 26]. This is not because ISPs are in-
capable of achieving higher utilization, but because their
networks must be prepared for link failures which could,
at any time, reduce their available capacity by a signif-
icant fraction. Thus, most ISP networks are engineered
with substantial headroom, so that ISPs can continue to
deliver high-quality service even after failures.

Second, TCP congestion control is designed to be cau-
tious, starting from a small window size and then in-
creasing every round-trip time until the flow starts ex-
periencing packet drops. The need for fairness requires
that all flows follow the same congestion-control behav-
ior, rather than letting some be cautious and others ag-
gressive. Caution, rather than aggression, is the bet-
ter choice for a uniform behavior because it can more
easily cope with a heavily overloaded network; if ev-
ery flow started out aggressively, the network could eas-
ily reach a congestion-collapsed state with a persistently
high packet-drop rate.

These decisions – underloaded networks and cau-
tious congestion control – were arrived at independently,
but interact counter-productively. When the network is
underloaded, flows will rarely hit congestion at lower
speeds. However, the caution of today’s congestion con-
trol algorithms requires that flows spend significant time
ramping up rather than aggressively assuming that more
bandwidth is available. In recent years there have been
calls to increase TCP’s initial window size to alleviate

this problem but, as we shall see later in the paper, this
approach brings only limited benefits.

In this paper we propose a new approach called re-
cursively cautious congestion control (RC3) that retains
the advantages of caution while enabling it to efficiently
utilize the available bandwidth. The idea builds on a
perverse notion of quality-of-service, called WQoS, in
which we assume ISPs are willing to offer worse service
if certain ToS bits are set in the packet header (and the
mechanisms for doing so – priority queues, are present
in almost all currently deployed routers). While tradi-
tional calls for QoS – in which better service is available
at a higher price – have foundered on worries about eq-
uity (should good Internet service only be available to
those who can pay the price?), pricing mechanisms (how
do you extract payments for the better service?), and
peering (how do peering arrangements cope with these
higher-priced classes of service?), in our proposal we are
only asking ISPs to make several worse classes of ser-
vice available that would be treated as regular traffic for
the purposes of charging and peering. Thus, we see fewer
institutional barriers to deploying WQoS. Upgrading an
operational network is a significant undertaking, and we
do not make this proposal lightly, but our point is that
many of the fundamental sources of resistance to tradi-
tional QoS do not apply to WQoS.

The RC3 approach is quite simple. RC3 runs, at the
highest priority, the same basic congestion control algo-
rithm as normal TCP. However, it also runs congestion
control algorithms at each of the k worse levels of ser-
vice; each of these levels sends only a fixed number of
packets, with exponentially larger numbers at lower pri-
ority levels. As a result, all RC3 flows compete fairly at
every priority level, and the fact that the highest prior-
ity level uses the traditional TCP algorithms ensures that
RC3 does not increase the chances of congestion col-
lapse. Moreover, RC3 can immediately “fill the pipe”
with packets (assuming there are enough priority levels),
so it can leverage the bandwidth available in underuti-
lized networks.

We implemented RC3 in the Linux kernel and in the
NS-3 network simulator. We find through experiments
on both real and simulated networks that RC3 provides
strong gains over traditional TCP, averaging 40% re-
duction in flow completion times over all flows, with
strongest gains – of over 70% – seen in medium to large
sized flows.

1

0! 1! 3!2! N!….!....! N-40!….!N-440!

Priority 1!Priority 0! Priority 2!Priority 3!

!"#$"%&'(%)$*)%+$,"-$"%&'(%)$*)%+$

Fig. 1: Packet priority assignments.

2 Design
2.1 RC3 Overview

RC3 runs two parallel control loops: one transmitting
at normal priority and obeying the cautious transmission
rate of traditional TCP, and a second “recursive low pri-
ority” (RLP) control loop keeping the link saturated with
low priority packets.

In the primary control loop, TCP proceeds as normal,
sending packets in order from index 0 in the byte stream,
starting with slow-start and then progressing to normal
congestion-avoidance behavior after the first packet loss.
The packets sent by this default TCP are transmitted at
‘normal’ priority – priority 0 (with lower priorities de-
noted by higher numbers).

In the RLP control loop, the sender transmits addi-
tional traffic from the same buffer as TCP to the NIC.1

To minimize the overlap between the data sent by the
two control loops, the RLP sender starts from the very
last byte in the buffer rather than the first, and works its
way towards the beginning of the buffer, as illustrated in
Figure 1. RLP packets are sent at low priorities (priority
1 or greater): the first 40 packets (from right) are sent
at priority 1; the next 400 are sent at priority 2; the next
4000 at priority 3, and so on.2 The RLP traffic can only
be transmitted when the TCP loop is not transmitting, so
its transmission rate is the NIC capacity minus the nor-
mal TCP transmission rate.

RC3 enables TCP selective ACK (SACK) to keep
track of which of low priority (and normal priority) pack-
ets have been accepted at the receiver. When ACKs are
received for low priority packets, no new traffic is sent
and no windows are adjusted. The RLP control loop
transmits each low priority packet once and once only;
there are no retransmissions. The RLP loop starts send-
ing packets to the NIC as soon as the TCP send buffer
is populated with new packets, terminating when its ‘last
byte sent’ crosses with the TCP loop’s ‘last byte sent’.
Performance gains from RC3 are seen only during the
slow-start phase; for long flows where TCP enters con-
gestion avoidance, TCP will keep the network maximally
utilized with priority 0 traffic, assuming appropriately
sized buffers [8]. If the bottleneck link is the edge link,

1As end-hosts support priority queueing discipline, this traffic will
never pre-empt the primary TCP traffic.

2RC3 requires the packets to be exponentially divided across the
priority levels to accommodate large flows within feasible number of
priority bits. The exact number of packets in each priority level has
little significance, as we shall see in § 5.1.2.

Rate decreases as TCP !
claims more bandwidth!

TCP achieves 100%
bottleneck link util. in
congestion avoidance!

Line Rate!

BW!

If bottleneck = edge, RLP traffic
is blocked once TCP reaches

congestion avoidance.!

Fig. 2: Congestion window and throughput with RC3.

0"0" 0"0" 2"2" 2"2" 2"2" …1" 1" 1"

0"0" 0"0" 0"0" 0"0" 2"2" 2"2" x"x" …

x"x" …

…

1st"RTT"

2nd"RTT"

3rd"RTT"

4th"RTT"(Complete)"

2"2" 2" 2"

Fig. 3: Example RC3 transmission from §2.2.

high priority packets will pre-empt any packets sourced
by the RLP directly at the end host NIC; otherwise the
low priority packets will be dropped elsewhere in the net-
work.

Figure 2 illustrates how the two loops interact: as the
TCP sender ramps up, the RLP traffic has less and less
‘free’ bandwidth to take advantage of, until it eventually
is fully blocked by the TCP traffic. Since the RLP loop
does not perform retransmissions, it can leave behind
‘holes’ of packets which have been transmitted (at low
priority) but never ACKed. Because RC3 enables SACK,
the sender knows exactly which segments are missing
and the primary control loop retransmits only those seg-
ments.3 Once the TCP ‘last byte sent’ crosses into traf-
fic that has already been transmitted by the RLP loop, it
uses this information to retransmit the missing segments
and ensure that all packets have been received. We walk
through transmission of a flow with such a ‘hole’ in the
following subsection.

2.2 Example

We now walk through a toy example of a flow with
66 packets transmitted over a link with an edge-limited
delay-bandwidth product of 50 packets. Figure 3 illus-
trates our example.

In the first RTT, TCP sends the first 4 packets at pri-
ority 0 (from left); after these high priority packets are
transmitted, the RLP loop sends the remaining 62 pack-
ets to the NIC – 40 packets at priority 1 and 22 packets
at priority 2 (from right), of which 46 packets are trans-
mitted by the NIC (filling up the entire delay-bandwidth
product of 50 packets per RTT).

The 21st and 22nd packets from the left (marked as

3Enabling SACK allows selective retransmission for dropped low
priority packets. However, RC3 still provides significant performance
gains when SACK is disabled, despite some redundant retransmissions.

2

Xs), sent out at priority 2, are dropped. Thus, in the sec-
ond RTT, ACKs are received for all packets transmitted
at priority 0 and for all but packets 21 and 22 sent at lower
priorities. The TCP control loop doubles its window and
transmits an additional 8 packets; the RLP sender ignores
the lost packets and the remaining packets are transmit-
ted by the NIC at priority 2.

In the third RTT, the sender receives ACKs for all
packets transmitted in the second RTT and TCP con-
tinues to expand its window to 16 under slow start. At
this point, the TCP loop sees that all packets except 21st
and 22nd have been ACKed. It, therefore, transmits only
these two packets.

Finally, in the fourth RTT the sender receives ACKs
for the 21st and 22nd packets as well. As all data ac-
knowledgements have now been received by the sender,
the connection completes.

3 Performance Model
Having described RC3 in §2, we now model our expected
reduction in Flow Completion Time (FCT) for a TCP
flow using RC3 as compared to a basic TCP implementa-
tion. We quantify gains as ((FCT with TCP) - (FCT with
RC3)) / (FCT with TCP) – i.e. the percentage reduction
in FCT [11]. Our model is very loose and ignores is-
sues of queuing, packet drops, or the interaction between
flows. Nonetheless, this model helps us understand some
of the basic trends in performance gains. We extensively
validate these expected gains in §5 and see the effects of
interaction with other flows.
Basic Model: Let BW be the capacity of the bottleneck
link a flow traverses, and u be the utilization level of that
link. We define A, the available capacity remaining in the
bottleneck link as A = (1−u)×BW . Since RC3 utilizes
all of the available capacity, a simplified expectation for
FCTs under RC3 is RT T + N

A , where RT T is the round
trip time and N is the flow size.

TCP does not utilize all available capacity during its
slow start phase; it is only once the congestion window
grows to A×RT T , that the link is fully utilized. The slow
start phase, during which TCP leaves the link partially
idle, lasts log(min(N,A× RT T)/i) RTTs, with i being
the initial congestion window of TCP. This is the interval
during which RC3 can benefit TCP.

In Figure 4, the solid line shows our expected gains
according to our model. Recall that i denotes the initial
congestion window under TCP. For flow sizes N < i, RC3
provides no gains over a baseline TCP implementation,
as in both scenarios the flow would complete in RT T +
N
A . For flow sizes i<N <A×RT T , the flow completes in
1 RTT with RC3, and log(N/i) RTTs with basic TCP in
slow start. Consequently, the reduction in FCT increases
with N over this interval.

Once flow sizes reach N > A × RT T , basic TCP

Flow Size (N)
i A×RTT

%
 F

C
T

 R
e

d
u

ct
io

n
	

i A×RTT i'

RC3

High InitCwnd

Fig. 4: Performance gains as predicted by a simple model for
RC3 and an increased initial congestion window.

reaches a state where it can ensure 100% link utilization
after log(A× RT T/i) RTTs. Therefore, the improve-
ments from RC3 become a smaller fraction of overall
FCT with increasingly large flows; this reduction roughly
follows log(A×RT T/i)×RT T×A

N (ignoring a few constants in
the denominator).
Parameter Sensitivity: The above model illustrates that
improvements in FCTs due to RC3 are dependent pri-
marily on three parameters: the flow size (N), the effec-
tive bandwidth-delay product (A×RT T), and the choice
of the initial congestion window (i). Peak improvements
are observed when N is close to A×RT T , because un-
der these conditions the flow completes in 1 RTT with
RC3 and spends its entire life time in slow start without
RC3. When the delay-bandwidth product increases, both
the optimal flow size (for performance improvement) in-
creases, and the maximum improvement increases.
Adjusting i: There are several proposals [7, 12] to ad-
just the default initial congestion window in TCP to 10
or even more packets. Assume we adjusted a basic TCP
implementation to use a new value, some i′ as its ini-
tial congestion window. The dotted line in Figure 4 il-
lustrates the gains from such an i′. When i′ increases,
the amount of time spent in slow start decreases to
log(min(N,A×RT T)/i′)×RT T . Flows of up to i′ pack-
ets complete in a single RTT, but unless i′ = A×RT T
(hundreds of packets for today’s WAN connections), ad-
justing the initial congestion window will always under-
perform when compared to RC3. However, there is good
reason not to adjust i′ to A×RT T : without the use of low
priorities, as in RC3, sending a large amount of traffic
without cautious probing can lead to an increase in con-
gestion and overall worse performance. Our model does
not capture the impact of queueing and drops, however,
in §5.1.4 we show via simulation how increasing the ini-
tial congestion window to 10 and 50 packets penalizes
small flows in the network.

4 Linux Implementation
We implemented RC3 as an extension to the Linux 3.2
kernel on a server with Intel 82599EB 10Gbps NICs.

3

send	
APPLICATION	

tcp_sendmsg	

tcp_transmit_skb	

TCP
Control 	

Loop	

TCP	

P0
transmitted as
per allowed

window 	

RLP
Control
Loop	
 Low

Priority
transmitted
all at once	

ip_queue_xmit	

Insert Priority in DSCP	
IP	

DEVICE	
 prio_enqueue	

P0	
 P1	
 P2	

prio_dequeue	

NIC Tx Ring Buffer	

recv	
APPLICATION	

tcp_rcv_established	

TCP	

ip_rcv	

Read Priority from DSCP	

IP	

DEVICE	
 net_rx_action	

NIC Rx Ring Buffer	

tcp_data_queue	

tcp_ack*	
tcp_ack_rc3	

In-sequence 	

P0 packets	

Fast Path	

Slow Path	

Out-of-order P0 	

and RC3 	

packets	

Low Priority ACK	

Update SACK 	

Process P0 ACK	

 Advance snd_nxt 	

on “ACK Bump”	

(a) Sending Data (b) Receiving Data and Acks
Fig. 5: Modifications to Linux kernel TCP stack.

Our implementation cleanly sits within the TCP and IP
layers and requires minimal modifications to the kernel
source code. Because our implementation does not touch
the core TCP congestion control code, different conges-
tion control implementations can easily be ‘swapped out’
while still retaining compatibility with RC3. After de-
scribing our implementation in §4.1, we discuss how
RC3 interacts with other components of the networking
stack in §4.2, including application buffering, QoS sup-
port, hardware performance optimizations, and SACK
extensions.

4.1 TCP/IP in the Linux Kernel

We briefly provide high-level context for our implemen-
tation, describing the TCP/IP stack under the Linux 3.2
kernel. We expect that RC3 can be easily ported to other
implementations and operating systems as well, but leave
this task to future work.

Figure 5 illustrates the kernel TCP/IP architecture at a
very high level, along with our RC3 extensions shaded
in gray. The Linux kernel is as follows. When an appli-
cation calls send(), the tcp sendmsg function is invoked;
this function segments the send buffer in to ‘packets’ rep-
resented by the socket buffer (skb) datastructure. By de-
fault, each skb represents one packet to be sent on the
wire. After the data to be transmitted has been segmented
in to skbs, it is passed to the core TCP logic, and then
forwarded for transmission through the network device
queue to the NIC.

On the receiver side, packets arrive at the NIC and are
forwarded up to a receive buffer at the application layer.
As packets are read in, they are represented once again as
skb datatypes. Once packets are copied to skbs, they are
passed up the stack through the TCP layer. Data arriving
in-order is sent along the ‘fast-path’, directly to the appli-
cation layer receive buffer. Data arriving out of order is
sent along a ‘slow path’ to an out of order receive queue,
where it waits for the missing packets to arrive, before
being forwarded up in-order to the application layer.

We now describe how we extend these functions to
support RC3.

4.1.1 Sending Data Packets

RC3 extends the send-side code in the networking stack
with two simple changes, inserting only 72LOC in the
TCP stack and 2LOC in the IP stack. The first change,
in the TCP stack, is to invoke the RLP control loop once
the data has been segmented in the tcp sendmsg function.
We leave all of the segmentation and core TCP logic un-
touched – we merely add a function call in tcp sendmsg
to invoke the RLP loop, as shown in Fig. 5.

The RLP loop then reads the TCP write queue itera-
tively from the tail end, reading in the packets one by
one, marking the appropriate priority in the packet buffer,
and then sending out the packet. The field skb→priority
is assigned according to the sequence number of the
packet: the RLP loop subtracts the packet’s sequence
number from the tail sequence number and then divides
this value by the MSS. If this value is ≤ 40, the packet
is assigned priority 1, if the value is ≤ 400 it is assigned
priority 2, and so on. After the priority assignment, the
skb packets are forwarded out via the tcp transmit skb
function.

Our second change comes in the IP layer as pack-
ets are attached to an IP header; where we ensure that
skb→priority is not overwritten by the fixed priority as-
signed to the socket, as in the default case. Instead, the
value of skb→priority is copied to the DSCP priority bits
in the IP header.

Overall, our changes are lightweight and do not in-
terfere with core congestion control logic. Indeed, be-
cause the TCP logic is isolated from the RC3 code, we
can easily enable TCP CUBIC, TCP New Reno, or any
other TCP congestion control algorithms to run along-
side RC3.

4.1.2 Receiving Data Packets and ACKs

Extending the receive-side code with RC3 is similarly
lightweight and avoids modifications to the core TCP
control flow. Our changes here comprise only of 46 LOC
in the TCP stack and 1 LOC in the IP stack.

Starting from bottom to top in Figure 5, our first
change comes as packets are read in off the wire and
converted to skbs – here we ensure that the DSCP pri-
ority field in the IP header is copied to the skb priority
field; this change is a simple 1 LOC edit.

Our second set of changes which lie up the stack
within TCP. These changes separate out low priority
packets from high priority in order to ensure that the
high priority ACKing mechanism (and therefore the
sender’s congestion window) and other TCP variables
remain unaffected by the low priority packets. We
identify the low priority packets and pass them to the

4

out of order ‘slow path’ queue, using the unmodified
function tcp data queue. We then call a new func-
tion, tcp send ack rc3, which sends an ACK packet for
the new data at the same priority the data arrived on,
with the cumulative ACK as per the high priority traf-
fic, but SACK tags indicating the additional low priority
packets received. The priority is assigned in the field
skb→priority, and the packets are sent out by calling
tcp transmit skb, as explained in § 4.1.1.

The other modifications within the TCP receive
code interpose on the handling of ACKs. We invoke
tcp ack rc3 on receiving a low priority ACK packet,
which simply calls the function to update the SACK
scoreboard (which records the packets that have been
SACKed), as per the SACK tags carried by the ACK
packet. We also relax the SACK validation criteria to up-
date the SACK “scoreboard” to accept SACKed packets
beyond snd nxt, the sequence number up to which data
has been sent out by the TCP control loop.

Typically when a new ACK is received, the stack
double-checks that the received ACK is at a value less
than snd nxt, discarding the ACKs that do not satisfy this
constraint. We instead tweak the ACK processing to up-
date the snd nxt value when a high-priority ACK is re-
ceived for a sequence number that is greater than snd nxt:
such an ACK signals that the TCP sender has “crossed
paths” with traffic transmitted by the RLP and is enter-
ing the cleanup phase. We advance the send queue’s head
and update snd nxt to the new ACKed value and then al-
low TCP to continue as usual; we call this jump an “ACK
bump.”

While these changes dig shallowly in to the core TCP
code, they do not impact our compatibility with various
congestion control schemes.

4.2 Specific Implementation Features

We now discuss how RC3 interacts with some key fea-
tures at all layers of the networking stack, from software
to NIC hardware to routers and switches.

4.2.1 Socket Buffer Sizes

The default send and receive buffer sizes in Linux are
very small - 16KB and 85KB respectively. Performance
gains from RC3 are maximized when the entire flow is
sent out in the first RTT itself. This requires us to make
the send and receive buffers as big as the maximum flow
size (up to a few MBs in most cases). Window scaling
is turned on by default in Linux, and hence we are not
limited by the 64KB receive window carried by the TCP
header.

RC3 is nonetheless compatible with smaller send
buffer sizes: every call to tcp sendmsg passes a chunk
of data to the RLP control loop, which treats that chunk,
logically, as a new flow as far as priority assignment is

TCP Send Buffer	

RLP Control Loop	

P1	

NIC	

Send buffer contains
large packet sizes of
multiple MSS.	

RLP Loop assigns same
priorities to large packets
based on start sequence	

Packets partitioned into
MSS-sized packets, each
with same priority,
before transmission.	

9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	

9	
 8	
 7	

9	
8	
7	

Fig. 6: RC3 combined with TSO.

concerned. We include a check to break the RLP con-
trol loop to ensure that the same packet is not trans-
mitted twice by subsequent calls to tcp sendmsg. In-
deed, this behavior can help flows which resume from
an application-layer imposed idle period.

4.2.2 Using QoS Support

RC3 is only effective if priority queueing is supported at
both endhosts and the routers in the network.
Endhosts: We increase the Tx queue length at the soft-
ware interface, to ensure that it can store all the packets
forwarded by the TCP stack. The in-built traffic con-
trol functionality of Linux is used to set the queuing dis-
cipline (qdisc) as prio and map the packet priorities to
queue ‘bands’. The prio qdisc maintains priority queues
in software, writing to a single NIC ring buffer as shown
in Figure 5. Thus, when the NIC is free to transmit, a
packet from band N is dequeued only if all bands from 0
to N−1 are empty. Up to 16 such bands are supported by
the Linux kernel, which are more than enough for RC3.4

Routers: All modern routers today support QoS, where
flow classes can be created and assigned to a particular
priority level. Incoming packets can then be mapped to
one of these classes based on the DSCP field. The exact
mechanism of doing so may vary across different ven-
dors. Although the ISPs may use the DSCP field for
some internal prioritization, all we require them to do
is to read the DSCP field of an incoming packet, assign
a priority tag to the packet which can be recognized by
their routers, and then rewrite the priority in the DSCP
field when the packet leaves their network.

4.2.3 Compatibility with TSO/LRO

TCP Segmentation Offload (TSO) and Large Receiver
Offload (LRO) are two performance extensions within
the Linux kernel that improve throughput through batch-
ing. TSO allows the TCP/IP stack to send packets com-
prising of multiple MSSes to the NIC, which then di-
vides them into MSS sized segments before transmitting
them on the link. LRO is the receiver counterpart which
amasses the incoming segments into larger packets at
the driver, before sending them higher up in the stack.
TSO and LRO both improve performance by amortizing

416 priority levels is sufficient to support RC3 flow sizes on the
order of a petabyte!

5

the cost of packet processing across packets in batches.
Batched packets reduce the average per-packet process-
ing CPU overhead, consequently improving throughput.

Figure 6 illustrates how RC3 behaves when TSO is
enabled at the sender and a larger packet, comprising of
multiple MSSes is seen by the RLP control loop. At first
glance, TSO stands in the way of RC3: RC3 requires
fine-grained control over individual packets to assign pri-
orities, and the over sized packets passing through under
TSO hinder RC3’s ability to assign priorities correctly
when it includes data from packets that should be as-
signed different priority classes. Rather than partition-
ing data within these extra large packets, we simply al-
low RC3 to label them according to the lowest priority
of any data in the segment. This means that we might
not strictly follow the RC3 design in §2 while assigning
priorities for some large packets. However, such a situ-
ation can arise only when the MSSes in a large packet
overlap with the border at which priority levels switch.
Since the traffic is partitioned across priority level expo-
nentially, such cases are infrequent. Further, the largest
TSO packet is comprised of at most 64KB. Therefore, no
more than 43 packets would be improperly labeled at the
border between priority levels.

TSO batching leads to a second deviation from the
RC3 specification, in that segments within a large packet
are sent in sequence, rather than in reverse order. For ex-
ample, in Figure 6, the segments in the packet are sent
in order (7,8,9) instead of (9,8,7). Hence, although RC3
still processes skb packets from tail to front, the physical
packets sent on the wire will be sent in short in-order
bursts, each burst with a decreasing starting sequence
number. Allowing the forward sequencing of packets
within a TSO batch turns out to be useful when LRO is
enabled at the receiver, where batching at the driver hap-
pens only if the packets arrive in order. As we’ll show
in §5.2, combining RC3 with TSO/LRO reduces the OS
overhead of processing RC3 packets by almost 50%, and
consequently leads to net gains in FCTs.

4.2.4 SACK Enhancements

Although RC3 benefits when SACK is enabled, it is in-
compatible with some SACK enhancements. Forward
Acknowledgment (FACK) [24], is turned on by default
in Linux. It estimates the number of outstanding packets
by looking at the SACKed bytes. RC3 SACKed packets
may lead the FACK control loop to falsely believe that all
packets between the highest cumulative ACK received
and the lowest SACK received are in flight. We therefore
disable FACK to avoid the RC3 SACKed bytes from af-
fecting the default congestion control behavior. Doing so
does not penalize the performance in most cases, as the
Fast Recovery mechanism continues transmitting unsent
data after a loss event has occurred and partial ACKs are

received, allowing lost packets to be efficiently detected
by duplicate ACKs. DSACK [17] is also disabled, to
avoid the TCP control loop from inferring incorrect in-
formation about the ordering of packets arriving at the
receiver based on RC3 SACKs.

5 Experimental Evaluation
We now evaluate RC3 across several dimensions. In
§5.1, we evaluate RC3 extensively using NS-3 simu-
lations - §5.1.1, compares RC3’s FCT reductions with
the model we described in §3; §5.1.2 and §5.1.3 evalu-
ate RC3’s robustness and fairness, and §5.1.4 compares
RC3’s FCT reductions relative to other designs. We eval-
uate our Linux RC3 implementation in §5.2.

5.1 Simulation Based Evaluation

We evaluate RC3 using a wide range of simulation set-
tings. Our primary simulation topology models the
Internet-2 network consisting of ten routers, each at-
tached to ten end hosts, with 1Gbps bottleneck band-
width and 40ms RTT. It runs at 30% average link utiliza-
tion [18, 21, 26]. The queue buffer size is equal to the
delay-bandwidth product (RTT×BW) in all cases, which
is 5MB for our baseline. The queues do priority drop-
ping and priority scheduling. All senders transmit using
RC3 unless otherwise noted. Flow sizes are drawn from
an empirical traffic distribution [6]; with Poisson inter-
arrivals.

For most experiments we present RC3’s performance
relative to a baseline TCP implementation. Our baseline
TCP implementation is TCP New Reno [16] with SACK
enabled [9, 25] and an initial congestion window of 4 [7];
maximum segment size is set to 1460 bytes while slow
start threshold and advertised received window are set to
infinity.

5.1.1 Baseline Simulation

We first investigate the baseline improvements using
RC3 and compare them to our modeled results from §3.
Validating the Model: Figure 7 compares the gains pre-
dicted by our model (§3) with the gains observed in our
simulation. The data displayed is for 1Gbps bottleneck
capacity, 40ms average RTT, and 30% load. Error bars
plotting the standard deviation across 10 runs are shown;
they sit very close to the average. For large flows, the
simulated gains are slightly lower than predicted; this is
the result of queueing delay which is not included in our
model. For small flows – four packets or fewer – we actu-
ally see better results than predicted by the model. This
is due to large flows completing sooner than with reg-
ular TCP, leaving the network queues more frequently
vacant and thus decreasing average queueing delay for
short flows. Despite these variations, the simulated and
modeled results track each other quite closely: for all but
the smallest flows, we see gains of 40–75%.

6

Fig. 7: Reduction in FCT as predicted by model vs simulations.
(RTT×BW = 5MB, 30% average link utilization)

Average
Over
Flows

Average
Over
Bytes

10% Load
Regular FCT (s) 0.125 0.423

RC3 FCT (s) 0.068 0.091
% Reduction 45.56 78.36

30% Load
Regular FCT (s) 0.135 0.443

RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

50% Load
Regular FCT (s) 0.15 0.498

RC3 FCT (s) 0.088 0.176
% Reduction 41.44 64.88

Fig. 8: Reduction in FCT with load variation, with RTT×BW
fixed at 5MB

Link Load: Figure 8 shows FCT performance gains
comparing RC3 to the base TCP under uniform link
load of 10%, 30%, or 50%. RTT×BW is fixed at 5MB
across all experiments. As expected, performance im-
provements decrease for higher average link utilization.
For large flows, this follows from the fact that the avail-
able capacity (A = (1− u)×BW) reduces with increase
in utilization u. Thus, there is less spare capacity to be
taken advantage of in scenarios with higher link load.
However, for smaller flows, we actually see the opposite
trend. This is once again due to reduced average queue-
ing delays, as large flows complete sooner with most
packets having lower priorities than the packets from the
smaller flows.
RTT×BW: Figure 9 shows the FCT reduction
due to RC3 at varying RTT×BW. In this experi-
ment we adjusted RTTs and bandwidth capacities
to achieve RTT×BW of 500KB (40ms×100Mbps),
5MB (40ms×1Gbps and 400ms×100Mbps) and
50MB(400ms×1Gbps). As discussed in §3, the
performance improvement increases with increasing
RTT×BW, as the peak of the curve in Figure 4 shifts
towards the right. The opposite trend for very short

Average
Over
Flows

Average
Over
Bytes

100Mbps Bottleneck
40ms avg. RTT

Regular FCT (s) 0.167 0.691
RC3 FCT (s) 0.11 0.442
% Reduction 33.98 36.05

100Mbps Bottleneck
400ms avg. RTT

Regular FCT (s) 0.948 3.501
RC3 FCT (s) 0.567 0.783
% Reduction 40.29 77.62

1 Gbps Bottleneck
40ms avg. RTT

Regular FCT (s) 0.135 0.443
RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

1 Gbps Bottleneck
400ms avg. RTT

Regular FCT (s) 0.971 3.59
RC3 FCT (s) 0.558 0.569
% Reduction 42.45 84.17

Fig. 9: Reduction in average FCT with variation in RTT×BW
with 30% average link utilization

(a) Flow size 7.3KB (b) Flow size 1.7MB

Fig. 10: Cumulative Distribution of FCTs. (RTT×BW = 5MB,
30% average link utilization)

flows is repeated here as well.
Summary: Overall, RC3 provides strong gains, reduc-
ing flow completion times by as much as 80% depending
on simulation parameters. These results closely track the
results predicted by the model presented in §3.

5.1.2 Robustness

In the prior section, we evaluated RC3 within a single
context. We now demonstrate that these results are ro-
bust, inspecting RC3 in numerous contexts and under
different metrics. Many of the results in this section are
summarized in Table 1.
Performance at the Tails: Our previous figures plot the
average and standard deviation of flow completion times;
in Figures 10(a) and (b) we plot the full cumulative dis-
tribution of FCTs from our Internet-2 experiments for
two representative flow sizes, 7.3KB and 1.7MB.5 We

5The ‘jumps’ or ‘banding’ in the CDF are due to the uniform link
latencies in the simulation topologies. Paths of two hops had an RTT
of 40, paths of three hops had an RTT of 60, and so on. A flow which
completes in some k RTTs while still under slow start thus completes

7

Average
Over
Flows

Average
Over
Bytes

Default: Internet-2
Regular FCT (s) 0.135 0.443

RC3 FCT (s) 0.076 0.114
% Reduction 43.54 74.35

Telstra Topology
Regular FCT (s) 0.159 0.510

RC3 FCT (s) 0.084 0.111
% Reduction 47.07 78.13

RedClara Topology
Regular FCT (s) 0.17 0.429

RC3 FCT (s) 0.097 0.098
% Reduction 42.78 77.16

ESNet Topology
Regular FCT (s) 0.207 0.478

RC3 FCT (s) 0.137 0.0976
% Reduction 33.91 79.58

2000 Workload
Regular FCT (s) 0.0871 0.238

RC3 FCT (s) 0.0704 0.079
% Reduction 13.83 66.73

Link Heterogeneity
Regular FCT (s) 0.159 0.541

RC3 FCT (s) 0.087 0.141
% Reduction 45.35 73.89

Table 1: RC3 performance in robustness experiments.

see in these results that performance improvements are
provided across the board at all percentiles; even the 1st

and 99th percentiles improve by using RC3.
Topology: We performed most of our experiments on
a simulation topology based off a simplified model of
the Internet-2 network. To verify that our results were
not somehow biased by this topology, we repeated the
experiment using simulation topologies derived from the
Telstra network, the Red Clara academic network, and
the complete ESNet [1, 4], keeping the average delay as
40ms and the bottleneck bandwidth as 1Gbps. All three
topologies provided results similar to our initial Internet-
2 experiments: average FCTs for Telstra improved by
47.07%, for Red Clara, by 42.78%, and for ESNet by
33.91%.
Varying Workload Distribution: Our baseline experi-
ments use an empirical flow size distribution [6]. A no-
ticeable property of the flow size distribution in our ex-
periments is the presence of of very large flows (up to
a few MBs) in the tail of the distribution. We repeated
the Internet-2 experiment with an empirical distribution
from a 2000 [2] study, an era when average flow sizes
were smaller than today. Here we saw that the average
FCT improved by only 13.83% when averaged over all
flows. When averaging FCT gains weighted by bytes,
however, we still observe strong gains for large flows re-
sulting in a reduction of 66.73%.
Link Heterogeneity: We now break the assumption of
uniform link utilization and capacity: in this experiment
we assigned core link bandwidths in the Internet-2 topol-
ogy to a random value between 500Mbps and 2Gbps.
We observed that FCTs in the heterogenous experiment
were higher than in the uniform experiment, for both
TCP and RC3. Nevertheless, the penalty to TCP was
worse, resulting in a stronger reduction in flow comple-

in approximately k ∗RT T time. This created fixed steps in the CDF, as
per the RTTs

Fig. 11: Average FCTs with increasing arbitrary loss rate.
(RTT×BW = 5MB, 30% average link utilization)

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.167 0.691

1 RC3 Priority Level FCT 0.126 0.496
% 24.55 28.22

3 RC3 Priority Levels FCT 0.11 0.442
(40, 400, 4000) % 33.98 36.05

4 RC3 Priority Levels FCT 0.112 0.434
(10, 100, 1000, 10000) % 32.94 37.19

Fig. 12: Reduction in FCT with varying priority levels.
(RTT×BW = 500KB, 30% average link utilization)

tion times, when averaged across flows.
Loss Rate: Until now all loss has been the result of
queue overflows; we now introduce random arbitrary
loss and investigate the impact on RC3. Figure 11 shows
flow completion times for TCP and RC3 when arbitrary
loss is introduced for 0.02-0.1% of packets. We see that
loss strongly penalizes TCP flows, but that RC3 flows
do not suffer nearly so much as TCP. RC3 provides even
stronger gains in such high loss scenarios because each
packet essentially has two chances at transmission. Fur-
ther, since the RLP loop ignores ACKs and losses, low
priority losses do not slow the sending rate.
Priority Assignment: Our design assigns packets across
multiple priorities, bucketed exponentially with 40 pack-
ets at priority 1, 400 at priority 2, and so on. We per-
formed an experiment to investigate the impact of these
design choices by experimenting with an RC3 deploy-
ment when 1, 3, or 4 additional priority levels were en-
abled; the results of these experiments are plotted in
Fig. 12. We see that dividing traffic over multiple pri-
ority levels provides stronger gains than with only one
level of low priority traffic. The flows which benefit the
most from extra priorities are the medium-sized flows
which, without RC3, require more than one RTT to com-
plete during slow start. A very slight difference is seen in

8

performance gains when bucketing packets as (10, 100,
1000, 10000) instead of (40, 400, 4000).
Application Pacing: Until now, our model application
has been a file transfer where the entire contents of the
transfer are available for transmission from the begin-
ning of the connection. However, many modern ap-
plications ‘pace’ or ‘chunk’ their transfers. For exam-
ple, after an initial buffering phase YouTube paces video
transfers at the application layer, transmitting only a few
KB of data at a time proportional to the rate that the
video data is consumed. To see the effect of RC3 on
these type of flows, we emulated a YouTube transfer [30]
with a 1.5MB buffer followed by 64KB chunks sent ev-
ery 100ms. Ultimately, RC3 helped these video connec-
tions by decreasing the amount of time spent in buffer-
ing by slightly over 70% in our experimental topology.
This means that the time between when a user loads the
page and can begin video playback decreases while us-
ing RC3. However, in the long run, large videos did not
complete transferring the entire file any faster with RC3
because their transfer rate is dominated by the 64KB pac-
ing.
Summary: In this section, we examined RC3 in numer-
ous contexts, changing our experimental setup, looking
at alternative application models, and investigating the
tail distribution of FCTs under RC3 and TCP. In all con-
texts, RC3 provides benefits over TCP, typically in the
range of 30-75%. Even in the worst case context we
evaluated, when downlink rather than uplink capacities
bottlenecked transmission, RC3 still outperformed base-
line TCP by 10%.

5.1.3 RC3 and Fairness

In this subsection we ask, is RC3 fair? We evaluate two
forms of fairness: how RC3 flows of different sizes in-
teract with each other, and how RC3 interacts with con-
current TCP flows.
RC3 with RC3: It is well-known that TCP in the long
run is biased in that its bandwidth allocations benefit
longer flows over short ones. We calculated the ef-
fective throughput for flows using TCP or RC3 in our
baseline experiments (Figure 13). TCP achieves near-
optimal throughput for flow sizes less than 4 packets, but
throughput is very low for medium-sized flows and only
slightly increases for the largest (multiple-MB) flows.
RC3 maintains substantially high throughput for all flow
sizes, having a slight relative bias towards medium sized
flows.
RC3 with TCP: To evaluate how RC3 behaves with con-
current TCP flows, we performed an experiment with
mixed RC3 and TCP flows running concurrently. We
allowed 50% of end-hosts attached to each core router
in our simulations (say in set A) to use RC3, while the
remaining 50% (set B) used regular TCP. Overall, FCTs

Fig. 13: Median Flow Throughput

for both RC3 and TCP were lower than in the same setup
where all flows used regular TCP. Thus, RC3 is not only
fair to TCP, but in fact improves TCP FCTs by allowing
RC3 flows to complete quickly and ‘get out of the way’
of the TCP flows.

5.1.4 RC3 In Comparison

We now compare the performance gains of RC3 against
some other proposals to reduce TCP flow completion
times.
Increasing Initial Congestion Window: Figure 14(a)
compares the performance gains obtained from RC3
with the performance gains from increasing the baseline
TCP’s initial congestion window (InitCwnd) to 10 and
50. For most flow sizes, especially larger flows, RC3
provides stronger improvements than simply increasing
the initial congestion window. When averaging across
all flows, RC3 provides a 44% reduction in FCT whereas
increasing the InitCwnd to 10 reduces the FCT by only
13% and 50 reduces it by just 24%. Further, for small
flow sizes (≤ 4 packets), increasing the InitCwnd actu-
ally introduces a penalty due to increased queueing de-
lays. RC3 never makes flows do worse than they would
have under traditional TCP. These results confirm our ex-
pectations from §3.
Traditional QoS: An alternate technique to improve
FCTs is to designate certain flows as ‘critical’ and send
those flows using unmodified TCP, but at higher priority.
We annotated 10% of flows as ‘critical’; performance re-
sults for the critical flows alone are showed in Fig. 14(b).
When the ‘critical’ 10% of flows simply used higher pri-
ority, their average FCT reduces from 0.126 seconds to
0.119 seconds; while the non-critical flows suffered a
very slight (<2%) penalty. When we repeated the ex-
periment, but used RC3 for the critical flows (leaving the
rest to use TCP), the average FCT reduced from 0.126
seconds to 0.078 seconds, as shown in Figure 14(b) .
Furthermore, non-critical flows showed a slight (<1%)
improvement. This suggests that it is better to be able to
send an unrestricted amount of traffic, albeit at low pri-
ority, than to send at high priority at a rate limited by
TCP.
RCP: Finally, we compare against RCP, an alternative
transport protocol to TCP. With RCP, routers calculate
average fair rate and signal this to flows; this allows flows

9

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.135 0.443

i = 10 FCT 0.117 0.362
% 13.21 17.87

i = 50 FCT 0.102 0.272
% 24.33 38.24

RC3 FCT 0.076 0.114
% 43.54 74.35

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.126 0.435

QoS FCT 0.119 0.411
% 5.33 5.64

RC3 FCT 0.078 0.12
% 38.31 72.43

Average
Over
Flows

Average
Over
Bytes

Regular FCT (s) 0.135 0.443

RCP FCT 0.088 0.117
% 33.86 73.58

RC3 FCT 0.076 0.114
% 43.54 74.35

(a) Increased InitCwnd (b) Traditional QoS (c) RCP

Fig. 14: RC3 as compared to three alternatives. All FCTs are reported in seconds; % shows percent reduction from baseline.
(RTT×BW = 5MB, 30% average link utilization)

to start transmitting at an explicitly allocated rate from
the first (post-handshake) RTT, overcoming TCP’s slow
start penalty. We show the performance improvement
for RCP and RC3 in Fig. 14(c). While for large flows,
the two schemes are roughly neck-to-neck, RCP actu-
ally imposes a penalty for the very smallest (1-4 packet)
flows, in part because RCP’s explicit rate allocation en-
forces pacing of packets according to the assigned rate,
whereas with traditional TCP (and RC3), all packets are
transmitted back to back. These results show that RC3
can provide FCTs which are usually comparable or even
better than those with RCP. Further, as RC3 can be de-
ployed on legacy hardware and is friendly with existing
TCP flows, it is a more deployable path to comparable
performance improvements.
Summary: RC3 outperforms traditional QoS and in-
creasing the initial congestion windows; performance
with RC3 is on par with RCP without requiring substan-
tial changes to routers.

5.2 Evaluating RC3 Linux Implementation

We now evaluate RC3 using our implementation in the
Linux kernel. We extended the Linux 3.2 kernel as de-
scribed in §4. We did our baseline experiments using
both New Reno and CUBIC congestion control mecha-
nisms. We set the send and receive buffer sizes to 2GB,
to ensure that an entire flow fits in a single window. We
keep the default initial congestion window of 10 [12] in
the kernel unchanged.

Our testbed consists of two servers each with two
10Gbps NICs connected to a 10Gbps Arista datacen-
ter switch. As the hosts were physically adjacent, we
used netem to increase the observed link latency to 10ms,
which reflects a short WAN latency.
Baseline: Flows with varying sizes were sent from one
machine to another. Figure 15(a) shows FCTs with RC3
and baseline TCP implementation in Linux compared to

RC3 and baseline TCP NS-3 simulations (with the ini-
tial congestion windows set to 10), both running with
10Gbps bandwidth and 20ms RTT. The figure reflects av-
erages over 100 samples.

Overall, RC3 continues to provide strong gains over
the baseline TCP design, however, our results in im-
plementation do not tightly match our simulated results
from NS. The baseline TCP implementation in Linux
performs worse than in simulation because of delayed
ACK behavior in Linux: when more than two segments
are ACKed together, it still only generates an increase
in congestion window proportional to two packets be-
ing ACKed. This slows down the rate at which the con-
gestion window can increase. The RC3 FCT is slightly
higher in Linux than in simulation for large flows be-
cause of the extra per-packet overhead in receiving RC3
packets: recall from §4 that RC3 packets are carried over
the Linux ‘slow path’ and thus have slightly higher per-
packet overhead.

In Figure 15(b), we repeat the same experiment with
only 1Gbps bandwidth set by the token bucket fil-
ter queueing discipline (retaining 10ms latency through
netem). In this experiment, results track our simulations
more closely. TCP deviates little from the baseline be-
cause the arrival rate of the packets ensures that at most
two segments are ACKed by the receiver via delayed
ACK, and thus the congestion window increases at the
correct rate. Overall, we observe that RC3 in implemen-
tation continues to provide gains proportional to what we
expect from simulation.

While these graphs show the result for New Reno, we
repeated these experiments using TCP CUBIC and the
FCTs matched very closely to New Reno, since both
have the same slow start behavior.
Endhost Correctness: Priority queueing is widely de-
ployed in the OS networking stack, NICs, and routers,

10

(a) 20ms×10Gbps

(b) 20ms×1Gbps
Fig. 15: FCTs for implementation vs. simulation

(a) Low Priority Starts
after High Priority

(b) High Priority Starts
after Low Priority

Fig. 16: Correctness of Priority Queuing in Linux

but is often unused. We now verify the correctness of
the prio queueing discipline in Linux. We performed our
experiments with iPerf [3] using the default NIC buffer
size of 512 packets and with segment offload enabled to
achieve a high throughput of 9.5Gbps. All packets in an
iPerf flow were assigned the same priority level – this ex-
periment does not use RC3 itself. All flows being sent to
a particular destination port were marked as priority 1 by
changing the DSCP field in the IP header. We connected
two endhosts directly, with one acting as the iPerf client
sending simultaneous flows to the connected iPerf server
(a) with a low priority flow beginning after a high priority
flow has begun, and (b) with a high priority flow begin-
ning after a low priority flow has begun. Figure 16 shows
that the priority queueing discipline behaves as expected.
Switch Correctness: We extended our topology to con-
nect three endhosts to the switch, two of which acted as
iPerf clients, sending simultaneous flows as explained
above to the third endhost acting as the iPerf server.
Since the two senders were on different machines, pri-
oritization was done by the router. Figure 17 shows that
priority queueing at the switch behaves as expected.
Segment and Receiver Offload: In §4.2.3 we discussed

(a) Low Priority Starts
after High Priority

(b) High Priority Starts
after Low Priority

Fig. 17: Correctness of the Priority Queuing in the Switch

(a) Comparing FCTs for Regular TCP with RC3

(b) Zooming in to observe trends for RC3 FCT
Fig. 18: FCTs for Regular TCP and RC3 with TSO/LRO
(20ms×10Gbps)

how RC3 interacts with segment and receiver offload;
we now evaluate the performance of RC3 when com-
bined with these optimizations. For this experiment, we
used the same set up, as our baseline and sent a 1000
packet flow without TSO/LRO, with each enabled inde-
pendently, and with both TSO and LRO enabled. Fig-
ure 18 plots the corresponding FCTs excluding the con-
nection set-up time.

For baseline TCP, we see that TSO and LRO each
cause a performance penalty in our test scenario. TSO
hurts TCP because the increased throughput also in-
creases the number of segments being ACKed with one
single delayed ACK, thus slowing the rate at which the
congestion window increases. LRO aggravates the same
problem by coalescing packets in the receive queue, once
again leading them to be ACKed as a batch.

In contrast, RC3’s FCTs improve when RC3 is com-
bined with TSO and LRO. TSO and LRO do little to
change the performance of RC3, when enabled indepen-
dently, but when combined they allow chunks of pack-
ets to be processed together in batches at the receiver.
This reduces the overhead of packet processing by al-
most 50%, resulting in better overall FCTs.

11

6 Discussion
Deployment Incentives: For RC3 to be widely used re-
quires ISPs to opt-in by enabling the priority queueing
that already exists in their routers. As discussed in the
introduction, we believe that giving worse service, rather
than better service, for these low priority packets allevi-
ates some of the concerns that has made QoS so hard
to offer (in the wide area) today. WQoS is safe and
backwards compatible because regular traffic will never
be penalized and pricing remains unaffected. Moreover,
since RC3 makes more efficient use of bandwidth, it al-
lows providers to run their networks at higher utiliza-
tion, while still providing good performance, resulting in
higher return in investment for their network provision-
ing.
Partial Support: Our simulations assume that all routers
support multiple priorities. If RC3 is to be deployed, it
must be usable even when the network is in a state of par-
tial deployment, where some providers but not all sup-
port WQoS. When traffic crosses from a network which
supports WQoS to a network which does not, a provider
has two options: either drop all low priority packets
before they cross in to the single-priority domain (ob-
viating the benefits of RC3), or allow the low priority
packets to pass through (allowing the packets to subse-
quently compete with normal TCP traffic at high prior-
ity). Simulating this latter scenario, we saw that average
FCTs still improved for all flows, from using RC3 when
20% of routers did not support priorities; when 50% of
routers did not support priorities small flows experienced
a 6-7% FCT penalty, medium-sized flows saw slightly
weaker FCT reductions (around 36%), and large flows
saw slightly stronger FCT reductions (76-70%).
Middleboxes: Middleboxes which keep tight account of
in-flight packets and TCP state are a rare but growing at-
tribute of today’s networks. These devices directly chal-
lenge the deployment of new protocols; resolving this
challenge for proposals like RC3 and others remains an
open area of research [13, 20, 27, 29, 31].
Datacenters and Elsewhere: As we’ve shown via
model (§3) and simulation (§5), the benefits of RC3 are
strongest in networks with large RTT×BW. Today’s dat-
acenter networks typically do not fit this description:
with microsecond latencies, RTT×BW is small and thus
flows today can very quickly reach 100% link utilization.
Nevertheless, given increasing bandwidth, RTT×BW
may not remain small forever. In simulations on a fat-
tree datacenter topology with (futuristic) 100Gbps links,
we observed average FCT improvements of 45% when
averaged over flows, and 66% when averaged over bytes.
Thus, while RC3 is not a good fit for datacenters today,
it may be in the future.
Future: Outside of the datacenter, RTT×BW is already
large – and increasing. While increasing TCP’s ini-

tial congestion window may mitigate the problem in the
short term, given the inevitable expansion of available
bandwidth, the problem will return again and again with
any new choice of new initial congestion window. Our
solution, while posing some deployment hurdles, has the
advantage of being able to handle future speeds without
further modifications.

7 Related Work

Router-assisted Congestion Control: Observing TCP’s
sometimes poor ability to ensure high link utilization,
some have moved away from TCP entirely, designing
protocols which use explicit signaling for bandwidth al-
location. RCP [11] and XCP [22] are effective protocols
in this space. Along similar lines, TCP QuickStart [15]
uses an alternate slow-start behavior, which actively re-
quests available capacity from the routers using a new
IP Option during the TCP handshake. Using these ex-
plicitly supplied rates, a connection can skip slow start
entirely and begin sending at its allocated rate immedi-
ately following the TCP handshake. Unlike RC3, these
algorithms require new router capabilities.
Alternate TCP Designs: There are numerous TCP de-
signs that use alternative congestion avoidance algo-
rithms to TCP New Reno [10, 14, 19, 32, 35]. TCP
CUBIC [19] and Compound TCP [32] are deployed
in Linux and Windows respectively. Nevertheless, their
slow-start behaviors still leave substantial wasted capac-
ity during the first few RTTs – consequently, they could
just as easily be used in RC3’s primary control loop as
TCP New Reno. Indeed, in our implementation we also
evaluated TCP CUBIC in combination with RC3.

TCP FastStart [28] targets back-to-back connections,
allowing a second connection to re-use cached Cwnd and
RTT data from a prior connection. TCP Remy [34] uses
machine learning to generate the congestion control al-
gorithm to optimize a given objective function, based on
prior knowledge or assumptions about the network. RC3
improves flow completion time even from cold start and
without requiring any prior information about the net-
work delay, bandwidth or other parameters.

TCP-Nice [33] and TCP-LP [23] try to utilize the ex-
cess bandwidth in the network by using more aggressive
back-off algorithms for the low-priority background traf-
fic. RC3 also makes use of the excess bandwidth, but by
explicitly using priority queues, with a very different aim
of reducing the flow completion time for all flows.
Use of Low Priorities: PFabric [5] is a recent pro-
posal for datacenters that also uses many layers of prior-
ities and ensures high utilization. However, unlike RC3,
PFabric’s flow scheduling algorithm is targeted exclu-
sively at the datacenter environment, and would not work
in the wide-area case.

12

8 Acknowledgements
We would like to thank all our colleagues in UC Berke-
ley, for their help and feedback - in particular Sangjin
Han, Jon Kuroda, David Zats, Aurojit Panda and Gau-
tam Kumar. We are also very thankful to our anonymous
Hotnets 2013 and NSDI 2014 reviewers for their helpful
comments and to our shepherd Prof. Srinivasan Seshan
for his guidance in shaping the final version of the pa-
per. This material is based upon work supported by the
National Science Foundation Graduate Research Fellow-
ship under Grant No. DGE-1106400.

References
[1] CAIDA Internet Topology Data Kit. http://goo.gl/

QAbecc.
[2] Internet Traffic Flow Size Analysis. http://net.doit.

wisc.edu/data/flow/size/.
[3] iPerf. http://iperf.sourceforge.net/.
[4] Measuring ISP Topologies with Rocketfuel. In Proc. ACM SIG-

COMM, 2002.
[5] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker. Deconstructing Datacenter Packet Transport. In Proc.
ACM Workshop on Hot Topics in Networks (HotNets), 2012.

[6] M. Allman. Comments on bufferbloat. ACM SIGCOMM Com-
puter Communication Review, 2013.

[7] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial
Window. RFC 3390.

[8] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. In Proc. ACM SIGCOMM, 2004.

[9] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conservative
Selective Acknowledgment (SACK)-based Loss Recovery Algo-
rithm for TCP. RFC 3517.

[10] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas:
New Techniques for Congestion Detection and Avoidance. ACM
SIGCOMM Computer Communication Review, 1994.

[11] N. Dukkipati and N. McKeown. Why Flow-Completion Time
is the Right Metric for Congestion Control. ACM SIGCOMM
Computer Communication Review, 2006.

[12] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agar-
wal, A. Jain, and N. Sutin. An Argument for Increasing TCP’s
Initial Congestion Window. ACM SIGCOMM Computer Commu-
nication Review, 2010.

[13] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan. Re-
ducing Web Latency: the Virtue of Gentle Aggression. In Proc.
SIGCOMM, 2013.

[14] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC
3649.

[15] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start for
TCP and IP. RFC 4782.

[16] S. Floyd and T. Henderson. The NewReno Modification to TCP’s
Fast Recovery Algorithm. RFC 2582.

[17] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension
to the Selective Acknowledgement (SACK) Option for TCP. RFC
2883.

[18] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and C. Diot. Packet-Level Traffic Measure-
ments from the Sprint IP Backbone. IEEE Network, 2003.

[19] S. Ha, I. Rhee, and L. Xu. CUBIC: a New TCP-friendly High-
Speed TCP Variant. ACM SIGOPS Operating System Review,
2008.

[20] M. Honda, Y. Nishida, C. Raiciu, A. Greengalgh, M. Handley,

and H. Tokuda. Is it still possible to extend TCP? In Proc. IMC,
2011.

[21] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot. An Approach
to Alleviate Link Overload as Observed on an IP Backbone. In
Proc. IEEE INFOCOM, 2003.

[22] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for
High Bandwidth-Delay Product Networks. In Proc. ACM SIG-
COMM, 2002.

[23] A. Kuzmanovic and E. W. Knightly. TCP-LP: Low-priority ser-
vice via end-Point congestion Control. In IEEE/ACM ToN, 2006.

[24] M. Mathis and J. Mahdavi. Forward acknowledgement: Refining
tcp congestion control. ACM SIGCOMM Computer Communica-
tion Review, 1996.

[25] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selec-
tive Acknowledgment Options. RFC 2018.

[26] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and
D. Wetherall. Reducing network energy consumption via sleep-
ing and rate-adaptation. In Proc. USENIX NSDI, 2008.

[27] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Aminy, and B. Fordy.
Fitting Square Pegs Through Round Pipes: Unordered Delivery
Wire-compatible with TCP and TLS. In Proc. USENIX NSDI,
2012.

[28] V. N. Padmanabhan and R. H. Katz. TCP Fast Start: A Technique
for Speeding Up Web Transfers. In Proc. IEEE Global Internet
Conference (GLOBECOM), 1998.

[29] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How Hard Can It Be? De-
signing and Implementing a Deployable Multipath TCP. In Proc.
USENIX NSDI, 2012.

[30] A. Rao, A. Legout, Y. sup Lim, D. Towlsley, C. Barakat, and
W. Dabbous. Network Characteristics of Video Streaming Traf-
fic. In Proc. ACM CoNeXT, 2011.

[31] C. Rotsos, H. Howard, D. Sheets, R. Mortier, A. Madhavapeddy,
A. Chaudhry, and J. Crowcroft. Lost In the Edge: Finding Your
Way With Signposts. In Proc. USENIX FOCI, 2013.

[32] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP
Approach for High-Speed and Long Distance Networks. In Proc.
IEEE INFOCOM, 2006.

[33] A. Venkataramani, R. Kokku, and M. Dahlin. Tcp nice: A mech-
anism for background transfers. In Proc. USENIX OSDI, 2002.

[34] K. Winstein and H. Balakrishnan. TCP Ex Machina: Computer-
generated Congestion Control. In Proc. ACM SIGCOMM, 2013.

[35] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion
Control (BIC) for Fast Long-Distance Networks. In INFOCOM
2004.

13

