
Programmable Interfaces to Advanced Network Processing

Justine Sherry Sylvia Ratnasamy

Draft: Please Do Not Distribute

ABSTRACT
Modern networks implement a range of advanced process-
ing functions that inspect, transform and even store the con-
tent of packets they transport. This sophistication, however,
is not well reflected in the “interface” the network offers its
users through protocols such as IP and programming ab-
stractions such as sockets. As a result, network operators
cannot easily expose the availability of advanced traffic pro-
cessing functions to users nor can users tell the network
when and how they want to use these features.

To address this problem, we propose an architecture, Net-
Invoke, that allows for a richer interaction between the net-
work infrastructure and its users. NetInvoke is a framework
of interfaces and algorithms by which users can request ad-
vanced traffic processing while allowing operators control
over whether and how a user’s request is met. NetInvoke en-
sures user requests are serviced in a manner that is policy-
compliant, robust under network failure, accountable and
incrementally deployable.

1. INTRODUCTION
The Internet was originally designed to provide only one

function to its users: best-effort packet transport. Corre-
spondingly, a programmer’s interface to the network through
sockets and IP allows the user to name little more than the
destination of its packets, information required for forward-
ing.1 This simple interface was sufficient while networks
strictly adhered to implementing the original vision of sim-
ple “bits in, bits out” packet forwarding. Modern networks
however implement sophisticated processing functions that
go beyond simply forwarding packets to inspect, transform
and even store the content of packets they transport. For
example, today’s networks show widespread deployment of
middleboxes and router “service blades” that process traffic
for redundancy elimination, compression, encryption, pro-
tocol acceleration, access control, transcoding, intrusion de-
tection, filtering, caching and so forth [1, 3, 4, 5, 6].

Thus, the Internet today provides many more functions
than solely packet transport. Meanwhile, the network in-
terface presented to users still represents only forwarding.
1By a user we refer to applications running at endhosts where ap-
plication behavior may be configured by application developers,
individual users or system administrators as appropriate; e.g., it is
common that enterprise system administrators can override end-
user or default configurations.

Specifically, with the existing interface users can tell the net-
work where their packets should be sent but not how these
packets should be processed, even though the network is ca-
pable of diverse processing options.

This mismatch between deployment and abstraction leads
to clumsy interactions between the network and its users.
Users have no explicit mechanism to opt in, opt out, or con-
figure any of the embedded network functionality. For exam-
ple, a user A cannot easily request that the packets it receives
from S be processed by an intrusion detection system (IDS)
before delivery or that a flow to D not be routed through a
WAN optimizer. At the same time, in the absence of explicit
directives from end hosts, operators are left to determine
whether and how to apply advanced functions as best they
can. Network operators today do so through out-of-band
and typically manual configuration or “hijacking” based on
ad-hoc packet classification heuristics. The former leads to
relatively static and coarse-grained decisions while the lat-
ter can lead to unwanted, even incorrect, behaviors. In both
cases, the application developer, although well-positioned to
make such decisions, is out of the loop entirely.

An additional drawback is that the absence of a standard-
ized approach to discovering and invoking such in-network
functionality makes it difficult to federate these functions
into services that span multiple network domains. For ex-
ample, a network operator that supports firewall or caching
functionality might want to leverage the same functionality
in its neighboring networks so as to offer its customers a
better experience—dropping packets closer to the source or
serving content from caches closer to the requesting user.
Without such federation, the reach of services deployed by
a network operator is forever limited to a single domain.
From the standpoint of ISPs, this not only prevents them
from scaling their service (with the performance or security
improvements such scaling might bring their customers) but
also makes it difficult to compete with third-party overlay-
based services.2

This paper thus explores the question: given a network
infrastructure that implements diverse traffic processing op-
tions, what abstraction(s) should the network expose such
that users can easily leverage these in-network capabilities?
Our proposed solution is NetInvoke, a framework that en-

2For example, a commonly cited reason for the failure of ISP at-
tempts to launch CDN services in the late 1990s was their inability
to match Akamai’s global footprint [private commn. B.Maggs].

1

ables configuration and inter-domain invocation of advanced
network functionalities. We stress that our intent with Net-
Invokeis not to suggest that the existing network interface is
flawed and should be overhauled but rather that it be aug-
mented to accommodate advanced in-network capabilities.

NetInvoke is not the first to take aim at integrating middle-
boxes and the functionality they provide into the broader net-
work architecture. Prior proposals however focused largely
on the naming implications of middleboxes, proposing that
users explicitly address the specific middleboxes for their
traffic to traverse[10, 29]. These proposals resolve the ten-
sion of applying unsolicited functionality to users’ traffic.
But, they leave unresolved the question of how users dis-
cover these middleboxes, how users reason about which mid-
dleboxes are appropriate for use given routing and topol-
ogy conditions and, perhaps more importantly, they leave
unspecified the role of network providers and their policies
in offering and managing middlebox-based services. Net-
Invoke tackles the above unresolved questions and, in so
doing, proposes a somewhat different approach. To reduce
complexity for end users and provide network operators with
a stake in service selection, we propose that the appropriate
abstraction is instead to have users name the functionality
itself and leave the network to resolve how and where it is
performed. This allows end hosts to decide when to use ad-
vanced services, while allowing providers better control of
how to support the desired functionality, allocate resources
for use, and manage their users traffic.

The design of NetInvoke thus envisages an architecture in
which ISPs expose advanced in-network functions through
high-level service interfaces that are common across differ-
ent networks; end-user applications can thus program against
standardized features, akin to how applications today pro-
gram against well-known interfaces to Internet services[14].
The difficulty in realizing this vision stems from the fact that
the Internet is a federated system and, as such, the func-
tionality a user requests may not be ubiquitously deployed.
Moreover, each provider has its independent policy and charg-
ing goals that must be respected. Thus a user’s invocation
must be reconciled with the reality of where the requested
functionality is available and hence, whether and how the
request should be serviced.

NetInvoke addresses these challenges with a suite of in-
terfaces and algorithms that serve as the “glue” between in-
vocation and deployment, directing user invocations to the
appropriate network domain(s) in a manner that: (1) respects
the policies of all intermediate networks, (2) adapts to changes
in network conditions that impact service availability and,
(3) ensures accountability between the user and network do-
mains that actively participate to service the user’s request.
Because NetInvoke is intended to augment rather than re-
place IP, we can design it be both incrementally deployable
and backward compatible with the existing IP architecture.

To some extent, NetInvoke represents a technical architec-
ture in support of a presumed operational/business model; a

a.

UserNet
 User

BasicFirewall on all of
my incoming traffic? 1

ACK! BasicFirewall
applied.

2

Set Rule: Block
9.8.7.0/24? 3

 9.8.7.0/24
Blocked! 4 Internet

b.

AS 9012

UserNet

AS 1092

 User Internet

Figure 1: User and network views of service application.

model that makes two key assumptions: (1) that ISPs will
seek to offer advanced traffic processing features as a ser-
vice to users and (2) that ISPs will federate to scale these
offerings through bilateral settlements over higher-layer ser-
vices. While we don’t pretend to know whether this model is
a certain or even likely outcome, we argue it is viable and de-
sirable. ISPs today already deploy advanced processing fea-
tures in support of single-domain customer services—e.g.,
multicasting for U-Verse, VPN services to enterprises. And
IP itself serves as an example of ISPs successfully building a
federated service through bilateral relationships. We believe
this model is desirable because, in the long run, the restric-
tiveness of the existing network interface acts as a barrier to
innovation since it limits the ability for applications to easily
incorporate the new services that network operators might
deploy and hence the ability for ISPs to monetize their de-
ployment efforts.

The remainder of this paper is organized as follows: we
start with a high level overview of NetInvoke in § 2, present
its detailed design and evaluation in §3-6, discuss related
work in §7 and conclude.

2. OVERVIEW
NetInvoke aims to allow users, i.e. end host applications,

to program against standardized interfaces to in network func-
tionality. Figure 1a shows our desired interaction: the user
names the type of functionality it wants, and provides con-
figurations specific to its behavior. In this example, the user
wants to use a simple network firewall, which we refer to as
‘BasicFirewall.’ After enabling the BasicFirewall
(1,2), the user requests that a new rule be added to the fire-
walls access control list (3,4). Note that the user is never
concerned with selecting specific middleboxes to perform
the processing, nor does it have to learn about network rout-
ing and topology. Instead, it simply names the functionality
it wants, leaving the network to perform this selection.

2

At the risk of abusing an often overloaded term, we refer
to this named functionality as a service, identified by a ser-
vice name and associated with a set of service interfaces.
In Figure 1a, BasicFirewall is the name for a simple
firewall service with add_rule and remove_rule as its
service interfaces. Akin to how developers discover and
use APIs to Internet services, we assume service names and
interfaces are published through out-of-band means well-
known to application developers. While different networks
that implement the same functionality are not required to
support identical service interfaces, we assume they will of-
ten chose to do so, incented by the desire to interoperate with
applications developed against the interfaces of “first mover”
ISP(s) and a rich-get-richer phenomenon.

With application developers programming against only high-
level interfaces, their ISP must take on the responsibility of
actually selecting where the service is performed. In Net-
Invoke, a user that wants to use advanced services has one
or more framework provider(s), an ISP they direct their
service requests to. We term this the user’s framework ISP,
or FISP. For now, we assume that a user has a single FISP
which is the same as its access ISP; as we describe later,
these are not strict requirements.

The FISP may support BasicFirewall, and simply re-
configure local settings to enable the service for the user. Or,
it may not support BasicFirewall at all. In Figure 1b,
the FISP leverages the processing capabilities in neighboring
networks, who perform the firewalling functionality on all
traffic destined to the user. The ability to enable service pro-
cessing in other networks allows the FISP to provide access
to services it does not itself support, a feature that maximizes
service availability when new functionalities are deployed
incrementally. Further, the ability to enable processing in
other networks provides for a more diverse set of services
available to users. Services like WAN Optimization, which
requires processing at both endpoints of communication, or
Bandwidth Reservation, which requires a QoS guarantee at
every hop along the forwarding path, require the cooperation
of multiple networks.

Thus, beyond interfaces that speak directly to services,
our model requires that users have interfaces to communi-
cate with their networks regarding services. In NetInvoke,
this communication takes place using a suite of framework
interfaces. Framework interfaces are distinct from service
interfaces: they encapsulate requests about services, inform-
ing the network what functionality they want, and where.
Networks only need to understand service interfaces for the
services they provide. If a user tells a firewall to block a
particular protocol, or a cache to store a specific type of con-
tent, only those networks that perform firewalling or cache
processing need to understand these service-specific direc-
tives. Framework interfaces are general requests required
for service selection—e.g., asking the network to enable or
disable a service, or to apply it to ‘all incoming traffic’. They
don’t configure a particular service but tell the network what

service to apply and provide a description of where and for
what traffic to apply it to. With the framework interface, a
user can describe the service they need sufficiently such that
their FISP knows how to select external networks to provide
the service, without any a priori knowledge of what the ser-
vice is or how it works.

The main challenges NetInvoke must address include:
(1) User Interface: a user must be able to express its service
demands to its FISP, even though the FISP may not support
the service or know its requirements.
(2) Network Discovery and Resolution: given a user’s re-
quest, the FISP must be able to discover the networks the
user’s traffic traverses, learn which of those networks sup-
port the user’s desired service, and select an appropriate set
of them to provide the service.
(3) Interdomain Authentication and Accounting: a net-
work accepting a service request from another FISP must
be able to authenticate the request, or verify that the FISP
has authority to make configuration on behalf of the user, as
well as account for the request, or charge the FISP for the
services provided.
(4) Service Monitoring: a FISP, once it has selected a set
of networks to perform a service for the user’s INIT request,
must also monitor that the user’s traffic continue to receive
the service even if routing updates occur.

We discuss these aspects of our design in §3 and §4.
Before turning to the design, we clarify the scope of what

NetInvoke tackles. NetInvoke only augments IP and hence
cannot solve problems inherent to the current network layer
such as BGP convergence issues or network DDoS. That
said, users may be able to mitigate the impact of some of
these problems by using advanced processing services—e.g.,
through a multipath routing or in-network filtering service.
NetInvoke also does not address the question of how a spe-
cific service is implemented within a network domain—e.g.,
addressing how middleboxes or routers are provisioned and
placed within the network, how user requests are load-balanced
over these. While certainly non-trivial, the success of large-
scale cloud services and existing in-network services suggest
this is tractable and we leave it to future work to explore this
issue in depth.

3. USER INTERFACE
We start by describing the interface NetInvoke offers end

user applications (§3.1) and how this interface might be used
in the context of different services (§3.2). In the following
section we describe the functionality networks must imple-
ment in order to support this interface.

3.1 User-FISP Interfaces
As discussed previously, services in NetInvoke represent

standardized protocols (service interfaces) accompanied by
an identifier (a service name). All communication between
a user and its FISP negotiates the use of service interfaces.
The challenge to this negotiation is not only that the FISP

3

AS1 AS2 AS1 AS2 AS1 AS2

(a) Individual (b) Perimeter (c) Path

Figure 2: INIT request Invocation Patterns.

may not support the desired service, but that the FISP may
not know anything about the service’s functionality at all.
Without information beyond the service name, the FISP has
no way to learn that a Firewall should be performed once
on inbound traffic, while a WAN Optimizer should be ap-
plied on outbound traffic at both endpoints of communica-
tion. Our objective is therefore to allow the user to express
high level requests that the FISP can resolve without a priori
information about the service.

Each FISP exposes five basic functions to its users, that
together form a framework interface as seen by users. To ex-
press these functions, the user must communicate with some
entity representing ‘the network’. For this, the FISP exposes
an interface server which users can discover either through a
DHCP lookup or through manual configuration. Users send
messages to the interface server to express their service re-
quirements. While our discussion treats the interface server
as a single entity, a large FISP may use standard approaches
for replicating interface servers to divide the task of manag-
ing requests from a large user base.

We now discuss our five functions, focusing on the INIT
function, which is the core of the framework interface.

INIT. A user invokes the INIT function to enable a ser-
vice. The user specifies a service name and a set of param-
eters, and the FISP either provides the service functionality
locally or selects a set of external networks to provide the
functionality. In essence, the INIT message provides infor-
mation about what traffic the service should apply to, and
where the service should be performed; the FISP then uses
its knowledge of the network to resolve this into a set of spe-
cific networks that the traffic traverses and which are service
capable. We discuss how the FISP acquires this knowledge
and makes resolution decisions in the following section (4).
If the FISP cannot resolve the INIT request, it returns an
error message to the user. If it can resolve the request, it
forwards the INIT to external networks it selected and then
returns to the user a token identifying the request. As we
shall see, this token is later used when the user needs to up-
date or interact with the service configuration.

Since services vary in where they should be invoked, pa-
rameters allow the FISP to select an appropriate set of net-
works to perform the users request: for some services, ap-
propriate networks are those closest to the requester, while
for others, the appropriate networks are those furthest away.
A user thus needs a service-agnostic abstraction by which

to express what networks are appropriate choices for its re-
quested service. For this, we introduce the notion of an invo-
cation pattern which is a model that captures how and where
the network should apply the service. We identify three key
invocation patterns that we believe allow us to represent a
broad set of service requirements—these are shown in Fig. 2.
INIT requests thus come in one of the above three forms,
each of which describes a particular invocation pattern with
its associated set of parameters.

‘Individual’, in Fig. 2a, is the most basic of the three in-
vocation patterns. With this INIT request, the user specifies
an IP address, and the FISP assigns the service to the ASN
with authority over that address. There are no other parame-
ters. A user issues an Individual INIT request when it wants
the service supplied in a particular network, e.g., ad insertion
for flows in AT&T’s network.

‘Perimeter’, in Fig. 2b, constructs a border of service-
performing networks between the requester network and an
external address, such that all possible paths between the
request and the provided address must traverse the border.
Perimeter INIT requests use a limited number of parameters:
External Prefix: the border is constructed between the re-
quester and this specified prefix. A /0 requests a border
around the requester for all incoming traffic.
Proximity: whether or not the border should be near the re-
quester, or pushed towards the specified address.
Partial Coverage: If a complete border cannot be constructed,
construct a partial border.

Finally, ‘Path’, in Fig. 2c, applies a service along a path
between the requester and a specified IP address or prefix,
for either incoming or outgoing traffic. Path requests include
the most descriptive parameters of the three invocation pat-
terns. For instance, the user may specify that the service be
applied in a network near the requester, or near the external
address. The user may specify that the service be applied
once along the path, or multiple times along the path. Draw-
ing from previous efforts at taxonomizing middlebox behav-
ior [11] and our analysis of usage scenarios (§3.2), we arrive
at the list of parameters shown in Table 1.

For outbound ‘Path’ INIT requests (from the requester to
an external prefix), the user can additionally specify that a
path request be ‘active’ or ‘default’. For default configura-
tions, the INIT request will only succeed if the default for-
ward path conforms to the INIT parameters. However, if the
request is marked ‘active’, the user permits the FISP to redi-

4

Function Forwarding requirements
User’s prefix Prefix or IP (/32) whose traffic should traverse the service.
External prefix External prefix or IP whose traffic to or from the user should traverse the service.
Incoming, Outgoing,
or Bilateral

Whether the service should be applied on traffic destined to the requester, from the requester, or
on traffic flowing both directions to and from the requester.

Frequency How many times the service needs to be supported on the traffic’s path. (1) once, (2) twice, (3)
as many times as possible, (4) at every hop of the path.

Placement Whether the service is required in the user’s network, required in the external prefix’s network,
should be place near the users network, or near the external prefix’s network.

Single Instance If true, traffic cannot be split across multiple instances of the same interface. A user of an
Intrusion Detection System would likely set this value to true, since this interface needs to
performs analysis over all flows destined for to the user to provide complete analysis.

Active/Default If ‘Active’, outgoing traffic may be redirected along alternate forwarding paths to reach in-
stances of the service. User must embed INIT token in their traffic to be redirected. If ‘default’,
traffic flows over default routing paths only.

Path Inflation For ‘Active’ requests, whether or not the chosen forwarding path is allowed to be much longer
than the default path to reach the service.

Table 1: Parameters for the ‘Path’ INIT requests.

rect their traffic along alternate forwarding paths in order to
reach networks that support the service (we discuss in the
following section how the FISP can perform such multipath
routing). For these active requests, the user specifies an extra
parameter; whether or not ‘inflation’ is allowed in the final
path. If inflation is allowed, the alternate forwarding path
may be longer than the default path. The user may mark
the request as ‘no inflation’ if the service is performance en-
hancing and an inflated path would detriment performance.

Once an ‘active’ INIT request is resolved and invoked, the
user embeds the INIT token in packets may be redirected
along the service-performing path. Requiring that the user
embed the token in flows to be redirected provides the user
with fine grained control over when the network redirects
traffic to reach the service. Thus, if the active request in-
flates the path, but the service need only apply to HTTP or
VoIP traffic, the user can label only that traffic for redirec-
tion, leaving other traffic to traverse the default path. Note
that embedding tokens in this manner also allows users to
establish multiple INIT configurations for the same destina-
tion, sending packets along paths with potentially different
characteristics or service instances.

These invocation patterns and their respective parameters
allow us to describe a wide range of service requests, as we
illustrate in § 3.2.

After enabling the user’s services in external networks, the
FISP creates local state that maps the user’s token to details
of the networks assigned to perform the user’s service for
later use. We describe in § 4.2 implications of this state for
FISPs.

RELAY. After the FISP enables the service, the user may
need to invoke subsequent service-specific functions. For
this, the user can use RELAY messages as a shell for the
messages defined in the service interface. With a RELAY

message, the user specifies the relevant INIT token, and then
places whatever service-specific messages are defined un-
der the protocol. On receiving a RELAY message, the FISP
maps the user token to the corresponding set of services
ASes and forwards the user’s message to these ASes. A user
may likewise receive RELAY messages from the interface
server, containing messages generated by a service AS.

KEEPALIVE. This message extends the lifetime of the
service. The network periodically culls long-living INIT
state, but not without first performing a check with the user.
The FISP sends the user a KEEPALIVE? query along with
the INIT token; if the user responds with a KEEPALIVE of
its own, the service state is not evicted.

TERM. Deletes state for the INIT configuration, after for-
warding the termination signal to the external networks as-
signed to the user’s service.

GETCONFIG. Requests a list of all configurations (INIT
tokens, services, and parameters from INIT messages) which
apply to the user’s IP address or prefix, to aid management.

3.2 Service Examples
To test whether NetInvoke’s parameterizable INIT mes-

sages can express the needs of a broad set of services, we ex-
plored their application to six potential in-network services.
The parameter settings we derived for each are shown in Ta-
ble 2. Due to space constraints we only describe two of these
in greater detail—WAN Optimization and a Federated Fire-
wall. The remaining scenarios are detailed in our technical
report (available on request to the PC chairs).

WAN Optimization
WAN Optimization typically operates solely between dedi-
cated endpoints, often between dispersed networks of a sin-
gle enterprise, processing traffic between the two endpoints
for de-duplication, compression and protocol-specific opti-

5

Service Type Invoc. Pattern Parameters
WAN Optimization Path Twice; At Local, Near External; Bilateral; Single Instance: No; Active,

Inflation Not OK
Bandwidth Reservation Path Hop by Hop; Outgoing; Single Instance: No; Active; Inflation OK
Path Selection Path Once; Near Local; Outgoing; Single Instance: No; Active; Inflation OK
Transcoder Perimeter User’s IP address or ASN; Near Requester; Partial Coverage OK
Anonymizer Perimeter /0; Near Requester; Partial Coverage not OK
Firewall Perimeter /0; Away from Requester; Partial Coverage OK

Table 2: INIT parameters for six example services.

mizations. The benefits of such processing are twofold: a
reduction in bandwidth costs and an improved user expe-
rience through what vendors term ‘application acceleration.’
Today, manual configuration limits such services only to pre-
configured endpoints.

With NetInvoke, a FISP that supports WAN Optimization
can discover when compatible processing is available in ex-
ternal networks, and thus allow its users to use WAN Opti-
mization in a fine-grained and opportunistic manner.

INIT request. To initialize end-to-end WAN Optimiza-
tion, the user sends a Path INIT request containing the user’s
own IP address and the address of the external host to which
the traffic is to or from. The path INIT request should de-
clare that the service be applied bilaterally, so that both in-
coming and outgoing traffic for the user be minimized. The
frequency should be set to ‘twice’, and the placement should
be at the user’s network and near the external address, so
that both endpoints process the traffic. ‘Single instance’
should be set to false, since different flows can be split across
multiple WAN optimizers without disrupting service. The
user may choose active or default; an active request would
broaden the scope of WAN optimizers near the external end-
point available for use.

Resolution. Because the user’s request requires local sup-
port of the service, the FISP first looks to verify that WAN
Optimization is a locally supported feature. If it is, it then
looks at the default path and checks whether the destination
AS, or the second-to-last network in the AS path to the des-
tination, supports the WAN Optimization service. If so, the
FISP relays the user’s request to the external service AS, es-
tablishes service state, and reports back to the user. If not,
and if the FISP supports the discovery of alternate paths (de-
scribed in §4.1), then it will check these alternate paths to
see if they involve a different AS as a ’last hop’ before the
destination AS. Note that the FISP will only accept an al-
ternate path which does not have any path inflation. If the
FISP does discover such an AS, it queries the AS for service
availability. If either the local AS does not support WAN
Optimization, or it exhausts all paths to the destination with-
out finding an external AS to support the second instance of
the service, the FISP returns an error to the user.

Federated Firewall
Because the Internet does not provide the ability to shut off
traffic from an undesired source, firewalls perform filtering

within the network necessary to drop malicious traffic and
block Denial of Service attacks. However, firewalling de-
ployed near the recipient is not always sufficient to mitigate
the degradation in service from a massive flow of traffic as
in a DDoS attack. Consequently, ‘pushback’ mechanisms
propose that filters propagate backwards from the victim to-
wards the originator of the attack, dropping the flow of mali-
cious traffic before it overwhelms the recipient [22] Since
NetInvoke enables multiple networks to support the same
service interface, firewalling under this model can provide
for federated firewall service across multiple networks.

INIT request. To enable the firewall, the user would first
start with a Perimeter INIT request, requesting that the fire-
wall be deployed between the user and all external addresses
(/0). The user might allow incomplete coverage, since even
if firewalling cannot be totally deployed, some filtering may
lessen the load of an overwhelming amount of traffic.

Resolution. To resolve the request, the FISP would first
look locally if the user’s immediate network supports the
firewall. If it did, it would invoke the service there. If not,
it would look to the set of networks neighboring the user’s
network, and see if they supported the service. For those
that did not support the service, the FISP would query their
neighbors, and so on. Once the FISP has either discovered
appropriate networks to construct a perimeter, or exhausted
some limit for querying, it would invoke the firewall in fire-
wall enabled networks it discovered and report back to the
user.

4. NETWORK REQUIREMENTS
We now describe the functionality that FISPs and service

ASes must implement in order to support the interface pre-
sented in Section 3.

4.1 Discovery and Resolution
Ideally, to resolve the user’s INIT request into a specific

set of service-providing networks, the FISP would have a de-
tailed map of the entire Internet, with an omniscient view of
routes and network conditions. Realistically, this is neither
something networks are capable of, nor is it an easy goal to
work toward. Instead we require only that networks obtain
a view of the network that is sufficient to address all three
types of INIT queries.

In this section, we describe how the FISP can discover
(1) what services any network supports, (2) a set of neigh-

6

bors for any network, (3) an AS-level set of paths to and
from the user for any external IP address. We show that
these three pieces of information are sufficient to resolve In-
dividual, Perimeter, and Path INIT queries. However, we
note that the particular data and algorithms we describe here
are not the only way to acquire the required information. A
FISP may use more sophisticated methods or exploit inter-
ISP relationships to acquire a more detailed view of the net-
work than we describe and such sophistication would only
improve NetInvoke’s capabilities. With our discussion, we
aim only to show that resolution is reasonably achieved with
limited information and basic techniques.

Service Discovery. We start with a simple Individual
INIT query: a user u requests that its traffic en route to v re-
ceive the EasyTranscode service in v’s AS. With an Indi-
vidual INIT, the FISP knows which AS it wishes to perform
the service: it performs a lookup on v’s IP address and re-
trieves the appropriate ASN. It needs only to know whether
or not v’s AS supports the NetInvoke framework and the
EasyTranscode service. The FISP obtains this informa-
tion through a simple DNS lookup. We imagine a universal
registry; perhaps a lookup on 7018.NetInvoke.arpa
would resolve to the IP address for a server controlled by
7018. For simplicity, we refer to this server as an interface
server as well, although it need not be the same entity as the
interface server exposed to users.

From there, the FISP interface server queries 7018’s inter-
face server directly to discover whether or not it is capable of
performing EasyTranscode. If the AS does not support
EasyTranscode, the FISP returns an error to the user. In
addition, the FISP may cache the results of the query to avoid
requerying in the future; networks are unlikely to frequently
deploy or withdraw services.

Neighboring Networks. We now move to an example
where u sends a Perimeter INIT request, requesting that a
BasicFirewall be deployed between itself and another
address v. If the the perimeter is to be placed around u
itself, then it is straightforward for u’s FISP to obtain the
required topology information: BGP provides an AS path
for every globally announced prefix and the union of these
paths reveals the networks that might potentially form such
a perimeter, starting with u’s AS itself. However, more work
is required if u’s request is that the firewall be placed as close
to v as possible. If v’s ISP supports BasicFirewall,
this request is simple as a minimal border around v is its
own ISP. If the ISP does not support BasicFirewall, the
FISP will have to look to other networks to construct a bor-
der around v’s ISP. Hence, Perimeter INIT requests require
that the FISP have some understanding of AS-level topology,
as one has to discover a set of ASes which form a border
between the user and v. One plausible approach is simply
that u’s FISP query the destination AS for the information.
However, this may fail if the destination AS does not sup-
port NetInvoke, is untrusted, or unwilling to reveal the in-
formation. Hence, we instead assume the FISP learns the

set of neighbors for any AS using published Internet topol-
ogy maps. We recognize that most up-to-date sources of
such information are measurement based, but the accuracy
of topology mapping efforts [2] and inferences from neigh-
boring ASNs in BGP paths make us consider this a reason-
able, if imperfect, solution. Moreover, a FISP can always
complement this information with that learned from directly
querying ISPs when possible.

Once the FISP has access to the set of neighbors for any
network, it can start at one of the endpoints identified in the
INIT request and recursively query each ASes neighbors un-
til it discovers enough BasicFirewall ASes to construct
a suitable border. In our starting example, in which u re-
quests a perimeter between itself and v, near v, the FISP
would first start by looking up v’s ASN. Then, it would query
the AS to see whether or not it supported BasicFirewall.
If so, it would invoke the service in that AS, constructing
minimal perimeter around v. If v’s AS does not support
BasicFirewall, the FISP must then query each of the
AS’s neighbors and see if all of them support the service. If
any of them do not, it may query their neighbors, and so on.
This outward querying continues until either the FISP can
construct a perimeter, or the FISP crosses some threshold
for number of queries performed. If it reaches the threshold
and fails to find a total perimeter, it either fails and returns an
error (if the user demanded complete coverage), or forwards
the INIT request to the set of networks which do support the
service (if the user allows partial coverage).

Routing. Finally, to resolve a Path INIT request, u’s FISP
needs to know the AS-level paths for traffic both to and from
u. For default requests, the FISP only needs to discover the
default forwarding path. Obtaining the path u takes en route
to an external destination is straightforward: BGP tables pro-
vide an AS Path for every globally announced prefix. Alter-
natively, the user or FISP can issue a traceroute to obtain the
same information, converting the traceroute’s IP level path
into an AS level path [23]. For traffic destined to u from
some external source v, recent work [18] makes obtaining
the reverse traceroute (from v to s) reasonable. In addi-
tion, just as ISPs deploy looking glass servers today, net-
works may choose to deploy looking glass services within
NetInvoke to provide a better view of traffic for services im-
pacting their customers’ traffic. Once the FISP discovers
the relevant path, it can then look up the interface server for
each ASN, query them for whether or not they support the
requested service, and decide whether or not the path fits
the users INIT parameters. If it does, it enables the service
at the appropriate ASes, and if not, it returns an error. We
note that, unlike Individual and Perimeter services, Path ser-
vices are vulnerable to service disruption caused by routing
updates that change a path after services are enabled; we dis-
cuss the implications of such changes in § 4.2 and measure
their effect in § 6.

To maximize service availability for Path requests, Net-
Invoke uses a multipath route discovery protocol that reveals

7

alternate paths to a destination. Thus, even if u’s default path
to v does not traverse an AS that offers EasyTranscoder,
a FISP can enable multipath routing to redirect u’s traffic
along an alternate path that traverses an EasyTranscoder
AS. If the user flags their Path INIT request as ‘active’, the
FISP may redirect the user’s traffic along an alternate route
which fits the users service demands. After weighing the
literature on multipath routing proposals, we chose MIRO-
style [32] routing because it is simple, backwards-compatible
with existing routing and BGP and functions through bilat-
eral agreements in a manner that does not require the partic-
ipation of every AS on the path and allows transit networks
to enforce policy in the multipath routes they allow. Un-
der MIRO, u’s FISP can query other networks that support
MIRO and ask them to expose any alternate paths they have
to v. The queried AS can choose which paths it wishes to
expose or not, allowing it to enforce any policy from only
exposing the default path, to exposing all valley-free paths,
to exposing any path it has available. If any of the exposed
paths fit u’s constraints, the FISP can select that path and
tunnel u’s traffic to the queried AS, using it as a ‘waypoint’
that will then forward it along the path selected by the FISP.

We use a simple algorithm to explore alternate paths: for a
destination D, a FISP queries in turn every AS along the path
to D for alternate paths until it finds a path which conforms
to the user’s INIT request. If it doesn’t find a matching path,
it may go back to the alternate paths discovered, and query
the ASes in those paths as well.

4.2 Monitoring
Once the FISP successfully resolves a user INIT request,

it maintains state relevant to the user’s request. Associated
with the user’s INIT token, the FISP stores: (1) the param-
eters of the user’s INIT request, (2) the set of networks as-
signed to provide the user’s service, and (3) the paths that
traverse those networks. This information is useful, for ex-
ample, when a user wants to RELAY a message to all of
the service instances for a particular INIT request, or calls
GETCONFIG to get a list of rules applied to its own traffic.
More challenging, the FISP must also monitor the service
performing paths to ensure that they continue to meet the
user’s demands. While the user application and service in-
terface are responsible for monitoring the service functional-
ity itself (i.e. is it performing its duties correctly), the FISP
is responsible for ensuring only that the users traffic con-
tinue to traverse the network assigned to the service in case
of routing updates or failures.

For this, we consider default and active routing for PATH
requests. The FISP can monitor INIT configurations as-
signed to forward, default paths by watching BGP path up-
dates, or by periodically issuing traceroutes and watching for
AS-level path changes. For INIT configurations for reverse
paths, it can periodically issue traceroutes along this path or
have an external accomplice at the other endpoint inform it
of changes. Finally for active requests, the waypoint AS (as

part of MIRO’s operation) will notify the FISP explicitly that
the desired path is no longer valid when the FISP attempts
to forward traffic along the now invalid path.

In any of these cases, if the updated path still contains the
service-performing ASes and conforms to the initial INIT
parameters, no change is necessary. If the INIT configura-
tion is active, the network may re-query to find an alternate
path that traverses the originally assigned service-providing
ASes and reroute traffic along that path. If the traffic can
no longer traverse the originally assigned service-providing
ASes, it reports an error to the user. The user can then either
respond with a TERM message (to cancel current usage),
or a KEEPALIVE message, in which case the network may
query to find entirely new paths which conform to the origi-
nal INIT request, terminating the old services in the process.

4.3 Authentication and Accounting
The previous sections described inter-ISP interactions that

negotiate the use of services and alternate routes. We re-
quire that these interactions between networks be both au-
thorized and accountable. Authorization means that requests
are verified to originate from an entity with authority over
the impacted IP address or prefix. Without authorization,
malicious networks or users could easily attack others by
invoking service interfaces on their behalf (for example, by
creating a BasicFirewall setting to block all of another user’s
incoming traffic). Accountability means that for any service
provided, the network always has means to charge for use of
the service. A network performing a service should have a
way to prove that another network requested the service, and
have a clear relationship with someone responsible to pay
for the service. Our demand for accountability does not re-
flect any particular payment model, but only guarantees that
there can be some network in place to hold responsible for
payment so that if networks wish to develop billing models,
they may. To allow networks to communicate their service
needs with both authorization and accountability, NetInvoke
provides two simple interdomain functions that encapsulate
a user’s requests: SVC_REQUEST and PEER_REQUEST.

SVC_REQUEST. SVC_REQUEST allows a FISP to for-
ward a user’s request to an external network. A sender AS1,
invoking a service interface in AS2, sends a SVC_REQUEST
to AS2 message which wraps any of the basic interface func-
tions (for example, INIT). AS1 signs the request with their
private key and sends it to the interface server for AS2.

If the two networks are peers, this extremely simple in-
teraction is sufficient to provide both authorization and ac-
countability. As peers, the networks exchange their public
keys and allocated prefixes out of band as part of their real-
world business relationship. AS2 can verify the authentic-
ity of the request by checking the message’s signature and
checking that the IP or prefix impacted by the configuration
is in a prefix allocated to AS1. AS2 knows that the configu-
ration is accountable, because it has a signature proving the
request came from AS1 (proof of the transaction) and it al-

8

ready has channels in place for settlement with its peer. An
AS could lie to a peer, but peering relationships reflect real-
world trust. Violation of that trust is cause for severance of
the relationship and even legal action. Thus, it is reason-
able to believe that a peer will not misrepresent itself in this
real-world context.

Networks which are not physically connected may still
peer at the service level. With such service peering, uncon-
nected networks establish business arrangements just as they
would as physical peers. They exchange public keys and al-
located prefixes, and establish channels for billing. Thus, the
same model of real-world trust which allowed peering net-
works to exchange services can extend to any two networks
whose owners are willing to sign a legal contract.

PEER_REQUEST. With SVC_REQUESTs, a FISP en-
ters direct settlements with service ASes. While simple, it
can unrealistic for a FISP to maintain service peering rela-
tionships with a large number of other networks. To resolve
this a second function, PEER_REQUEST allows non-peers
to invoke services with each other while achieving authen-
tication and accountability. PEER_REQUEST works by al-
lowing the service network to authenticate that the FISP has
authority over the user’s address, but perform accounting
with some other network. The FISP can forward its request
to a peer it shares with the service network, and then this peer
can relay the request to the service network, as such offering
to pay for service use on the FISP’s behalf. By forming a
chain of accountability, the service network AS3 can charge
the mutual peer, AS2, who will in turn charge the original
requesting FISP, AS1.

With this, AS3 no longer needs to account with the re-
quester AS1, but only to authorize AS1. AS3 can use one
of two mechanisms to authorize AS1. First, AS3 can make
use of Public Key Infrastructure if available. While the de-
ployment of PKI is a formidable demand, current proposals
for secure routing require exactly the same support as Net-
Invoke. Both S-BGP [19] and so-BGP [31] perform origin
authentication, which requires a mapping from ASN to pub-
lic key, and from any IP address prefix to the public key of
the AS authorized to announce that prefix. Thus, NetInvoke
can build off of the same infrastructure that serves these pro-
tocols, if deployed.

In the absence of such infrastructure, AS3 can perform a
‘checkback’ to authorize the requesting AS by asking the IP
address impacted by the nested INIT message. With a check-
back request, the AS sends the full signed request back to
the impacted IP. The host can then verify that the signature
represents its own provider, and affirm that the invocation
is acceptable. However, the checkback option has several
limitations. First, this option can only be used for invo-
cations performed on behalf of a single IP address; check-
ing back for INIT functions which impact whole IP prefixes
is impractical. More significantly, the communication can
be man-in-the-middled by an intermediary. However, this
attack is well-constrained: the man-in-the-middle must al-

ready have access to the traffic between the end user and
FISP, implying that the man-in-the-middle should be able to
manipulate the user’s traffic already. Thus, while the threat
is constrained, the network has some responsibility to en-
sure that this option is only used for interfaces which don’t
threaten security-critical operations.

Once the initial INIT command has been established through
AS2, AS1 can exchange SVC_REQUEST messages directly
with AS3. To terminate the configuration, the terminating
party must once again intermediate the SHUTDOWN mes-
sage through a RELAY_SVC message through AS2, to en-
sure that AS2 is informed of the service termination as well.

5. DESIGN DISCUSSION
We claimed earlier that NetInvoke is deployable and back-

ward compatible with the existing IPv4 infrastructure. We
now review the key requirements of our design with consid-
eration for deployability.

So far, we have assumed that all ISPs implement Net-
Invoke’s framework interfaces and functions and hence user
applications have relied on their local network provider serv-
ing as a FISP. We now describe how this assumption can be
lifted. A user whose local network provider does not support
NetInvoke has two options. First is that the user serve as its
own FISP. This is feasible provided the user is: (1) capa-
ble of implementing the network topology and route discov-
ery mechanisms from § 4, using measurement and available
topology repositories and (2) that remote ASes are willing to
directly settle with users. If the latter holds, a user might also
use alternate routes, tunneling directly to waypoints. We be-
lieve this scenario is practical for users in large enterprises
or campus organization where direct interaction/settlements
with remote ISPs is more likely.

The second option, amenable to even individual users, is
that a network other than the user’s direct provider serve as
its FISP. One question is the vantage point from which the
(non-local) FISP makes INIT resolution decisions. If the
user is able to issue its own topology measurements, then
the external FISP can use these (in combination with gen-
eral topology information it has available) to select services
in other networks on the user’s behalf. We envisage that a
FISP provides its remote users with the required measure-
ment tools when activating the user-FISP account. Every
request must be verified with a checkback, though. Further,
active service requests are not possible unless the user for-
ward their traffic to the FISP for redirection - the FISP cannot
make changes with the user’s local ISP.
With the above, we argue NetInvoke is practical for deploy-
ment for the following reasons:

• NetInvoke accommodates partial ISP adoption of both
service and FISP functionality

• NetInvoke operates with the incumbent ISP infrastruc-
ture, requiring no new overlay service providers (un-
like [8]) or global naming services (unlike [26, 10])

9

• Although our design benefits from availability of a PKI,
it does not strictly require it (unlike [26])

• NetInvoke imposes on an ISP the burden of ‘service
peerings’ (negotiating new services with remote ISPs)
and MIRO-style peerings (negotiating the use of alter-
nate paths with remote ISPs). However all such peer-
ings are optional; the downside to being degraded ser-
vice availability to the FISP’s users. Moreover, an ISP
can bootstrap these negotiations with the peering rela-
tionships it already has with its physical peers.

• NetInvoke does not require that both endpoints in a
communication support framework interfaces or a spe-
cific service. E.g., a popular server can invoke a fed-
erate firewall service with no change to the client side
(unlike proposals such as [33, 26])

• Finally, we (optionally) use MIRO for multipath route
discovery. As shown in [32], MIRO is backwards com-
patible with BGP and can be implemented with exist-
ing router equipment.

• NetInvoke only affects a router’s fast path when pro-
cessing packets for an active, Path service. In this case,
the router must map a user token (as opposed to the
packet’s destination IP address) to the next-hop on the
alternate path; this is easily done with an exact-match
entry and (based on the router architecture) can be im-
plemented with TCAMs on the fast path prior to the
regular longest-prefix match lookup in the FIB.

The above gains do not come for free. The compromise
NetInvoke makes is that it offers only best-effort access to
services (which, given the topology-sensitive nature of some
services, appears inevitable under partial deployment) and
cannot overhaul the fundamentals of the underlying IPv4
service model (e.g., we conjecture that much of the com-
plexity and deployment burden of proposals such as capabil-
ities[33] and RBF[26] arise because they transform the core
IP service model to be ‘default off’[16]).

Finally, our design also aims to align the incentives of all
parties: users benefit through improved application behav-
ior; service ASes can charge for service use while FISPs
benefit through charging users (for FISP connectivity) and
potentially through settlements with service ASes that they
select on behalf of their users.

6. EVALUATION
Although NetInvoke guarantees only best-effort access to

services, it incorporates various mechanisms such as multi-
pathing and remote discovery aimed at maximizing service
availability under partial deployment. In this section, we
evaluate these mechanisms, measuring service availability
under a range of network and deployment conditions.

The ability of a FISP to satisfy a user INIT request de-
pends on several input factors, including:
(1) What fraction of ASes deploy a service?
(2) Are edge or backbone networks more likely to support a
service?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

F
ra

ct
io

n
of

 A
S

 P
ai

rs
 A

bl
e

to
 A

cc
es

s
S

er
vi

ce

Percentage of ASes Supporting Service

Local Service Only
Default Path

Local Multipath, Unrestricted Inflation
Multipath, 1 Hop Inflation

Multipath, Unrestricted Inflation

Figure 3: Fraction of AS pairs able to access service with
and without multipath.

(3) What alternate routes are ISPs willing to export?
(4) What number and location of service ASes are needed to
satisfy the user’s INIT request?

We note that the above factors are not specific to the de-
tails of NetInvoke, and hence our results are largely intrinsic
to any interdomain use of services under partial deployment.
To the best of our knowledge, this is the first evaluation of
the feasibility of access to network services under the con-
straints of limited deployments.

Methodology. We built an AS-level routing and topol-
ogy simulator modeled after those used by other groups [17,
20, 32], but tailored to studying service access and path di-
versity. Our simulator modeled the AS graph from January
20, 2010, with inferred peering relationships provided by
CAIDA [2] and RouteViews [7]. This data included 33,508
AS nodes, which we further annotated as either ‘backbone’
or ‘edge’ networks. We define backbone networks to be net-
works with 250 or more peers. The remainder of the nodes
we annotated as edge networks.

For each simulation, we randomly annotated a fraction of
the ASes as ‘service’ ASes, indicating that the AS supported
the processing required for some desired service interface.
For the majority of our simulations we assumed that net-
works sought services that were anywhere on their forward
path, once, and that the INIT request was flagged ‘active.’

To simulate routing, we assigned each AS a single prefix.
Each network then propagated paths using standard valley-
free routing policies. When choosing between multiple paths
of equal policy rank, networks selected shortest paths, fol-
lowed by paths with the lowest next hop AS number. For
our simulations, resulting paths represented standard BGP
routing to each AS. We then executed MIRO [32] style mul-
tipath routing. In the majority of our simulations, a sending
network inspected its default path and queried each AS for
alternate routes to the destination, starting with the next hop
AS and moving toward the destination.

6.1 Benefit of Multipath
We investigated the likelihood of AS pairs having a service-

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

1
-

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 A
S

 P
ai

rs

Number of Service Performing ASes

Random, 25%
Backbone, 25%

Edges, 25%
Edges, 15%
Edges, 5%

Figure 4: Diversity of single service paths.

providing path between them with and without multipath
routing. We simulated service deployment in settings where
between 0 and 25% of randomly chosen ASes enabled the
desired services. For each simulation, we randomly selected
10,000 source-destination AS Pairs. We then inspected all
paths available under four routing models: (1) default rout-
ing, (2) ‘local’ multipath, in which a (potentially multihomed)
FISP selects among paths from its neighbors only and per-
forms no additional queries, (3) multipath with one-hop in-
flation, in which the FISP considers paths exposed by ASes
along the default route and a path is only accepted it is are
no more than one hop longer than the default path, and (4)
unrestricted multipath which removes the 1-hop restriction
of the previous case. The first two models do not require
MIRO’s support for multipath while the latter two do. We
restricted the MIRO-based schemes to use of a single ‘way-
point’ AS. We then logged whether each AS pair had a path
which traversed a service supporting AS under each model.

Figure 3 shows the fraction of AS Pairs with access to the
service for each of the multipath models. The x-axis shows
that a random x fraction of ASes perform the required pro-
cessing. The y-axis shows the fraction of AS pairs with a
path between them which includes at least one service sup-
porting AS. For completeness, we also plot the case where
users can only access a service if it is supported by their lo-
cal ISP; this is the case today with no access to services in
remote ISPs and, as expected, we see that service availability
in this case simply tracks deployment levels. At all levels of
service deployment, we see that both multipath and access
to services in remote ISPs significantly increase the fraction
of AS pairs able to access services. At limited deployments,
the gains due to multipath are most significant. When 5% of
networks perform service processing, 24.5% of AS pairs en-
counter a service-performing AS on their default path, while
35.2% do so with ‘local multipath’. This is encouraging in
that it represents a 5-7× improvement in service availabil-
ity relative to the baseline deployment level without requir-
ing the mechanisms of MIRO. However the absolute service
availability remains low. But, when the sender uses MIRO
and accepts paths which inflate the AS path by no more than

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Edges, 5%

Edges, 15%

Edges, 25%

Backbone, 15%

Backbone, 25%

Random
, 5%

Random
, 15%

Random
, 25%

F
ra

ct
io

n
of

 A
S

 P
ai

rs
 A

bl
e

to
 A

cc
es

s
S

er
vi

ce 0
1
2
3+ Queries

Figure 5: Number of queries until discovery of single ser-
vice providing path.

one hop, 60.1% of the pairs can access a service performing
AS. Even for services with widespread support, there are no-
ticeable gains from multipath: 96.5% of AS pairs can access
a service AS using multipath with one hop inflation.

It is conceivable that FISPs have different policies regard-
ing what service-providing ASes they would like to interact
with. As an indicator of their ability to act on such poli-
cies, we also considered the prevalence of service supporting
ASes between source and destination. I.e., when a sending
AS has a path to its destination which supports a desired
function, how often does it have choice? Figure 4 shows the
number of service-supporting ASes for AS pairs at differ-
ent deployment levels and for different deployment models.
The graph plots the complementary cumulative fraction of
AS pairs with a given number of service-supporting ASes
available to them. Thus, a given (x, y) coordinate says that
y fraction of AS pairs had greater than x service ASes avail-
able to them. We see that at high levels of deployment,
a majority had more than one AS available to provide the
desired service. The number of options drop when service
support is restricted to edges or backbone networks, though
a majority of paths still had more than one AS available. At
lower deployment levels, choice was less common.

In summary, we found that service availability is greatly
improved through multipath routing and access to remote
services and that multipath routing often revealed more than
one service providing AS to choose from.

6.2 Querying Overhead
We logged the number of queries required as an AS queried

its AS path until it found its first AS that provided a ser-
vice. We queried approximately 200,000 random pairs and
allowed a single waypoint and one hop of inflation. We dis-
play the results in Figure 5.

We first observe that the majority of AS Pairs find their
first service-performing path locally (i.e., at their FISP), or
with their first external query. This means that the majority
of gains due to multipath come by querying only one hop
upstream, to a physical peer or provider. Thus, an AS which

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

F
ra

ct
io

n
of

 A
S

 P
ai

rs
 A

bl
e

to
 A

cc
es

s
S

er
vi

ce

Percentage of ASes Supporting Service

All Paths
Standard Export Policies

Provider Paths Only
Strict (Only Best) Policy

Default Path

Figure 6: Impact of network policy on service discovery.

establishes peering relationships for multipath can reap the
majority of benefits even if they only query their direct neigh-
bors; i.e.without entering relationships with new ASes.

We also observe that external querying provides great ben-
efit when services are available in Backbone rather than Edge
networks. This is intuitive since Backbone deployments are
‘deeper’ in the network and hence require additional query-
ing.

In summary, we find that the querying cost for service dis-
covery in NetInvoke is low and that FISPs can offer their
users high service availability through interaction with just
their existing neighbors in the AS topology.

6.3 Export Policy
A network acting as a ‘waypoint’ AS for multipath may

export alternate paths to requesting networks, or choose to
keep them hidden. At 10 intervals between 0 and 25%, we
randomly chose 10,000 AS pairs and found all paths be-
tween source and destination given that intermediary ASes
exposed All Paths, exposed paths under one of five policies
discussed in MIRO [32]:
(1) All Paths: expose all available paths. This is a liberal
policy but may in fact be a reasonable one since it is likely
that ASes will charge for waypoint routing and hence the
requesting FISP appears as a customer.
(2) Standard Export Policies: use the previous-hop AS to
determine whether the backup path would be valley-free.
Expose only those paths which are valley-free.
(3) Provider Paths Only: expose all paths whose next-hop
AS is a provider.
(4) Strict (Only Best) Policies: expose all paths which are
‘as good’ as the best path. That is, if the default path is a
customer path, expose only customer paths, etc.
(5) Default Path: expose only the best path as in default
routing.

We allowed the paths one waypoint, and no more than
one AS hop of inflation. Figure 6 shows the results of these
policies at 0-25% random deployment. On the x-axis we
show the fraction of ASes supporting services, and on the y-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

F
ra

ct
io

n
of

 A
S

 P
ai

rs
 A

bl
e

to
 A

cc
es

s
S

er
vi

ce

Percentage of ASes Supporting Service

Once
50%, Relaxed

Once, Default Routing
Once, Near Src

Near Src & Dest

Figure 7: Fraction of AS Pairs able to access service
given varying service demands.

axis we see the fraction of AS pairs with service available.
As in MIRO, we observe that standard export policies are

very close to the ‘best’ case in which an AS exposes all avail-
able paths. Even the strict model provides significant gains
over default paths, more so at low deployment levels than
high. Under strict policy, where the network exposed only
paths as good as the default path, 46.5% of AS pairs found
service paths at 5% service deployment, and 93.0% of AS
pairs found paths at 25% deployment.

6.4 Service Requirements
Some types of services may require more than one in-

stance of the service to operate. To investigate the fea-
sibility of resolving these more demanding constraints, we
evaluated service availability under a variety of scenarios:
(1) Once: the service must occur once, anywhere on the path
(2) 50%, Relaxed: the service must occur in more than 50%
of ASes on the path. The request is ‘relaxed’, in that we
allow for up to two waypoints and two hops of path inflation.
(3) Once, Default Routing: the service occurs once and is
available on all paths between source and destination (either
in the source AS, all of the source ASes neighbors, at the
destination AS, or all of the destination ASes neighbors).
(4) Once, Near Source: the service is available either in the
source AS, or the source AS’s next hop to the destination.
(5) Near Source and Dest: the service is available near both
the source (source AS or next hop from source) and the des-
tination (destination AS or hop prior to the destination.

At deployment levels between 0 and 25%, we simulated
paths selection for 10,000 AS pairs and for all but the ‘Re-
laxed’ path we allowed only one waypoint and one hop of
inflation. Figure 7 demonstrates the relevant results. Like
Figure 3, the y-axis shows the fraction of AS pairs with a
path that provides access to the service, and the x-axis shows
the fraction of ASes deploying the desired service interface.

We see that location constraints limit the availability of
paths more than requirements for multiple instances of the
service. The demand that 50% of hops on the AS path per-
forms better than any of the models where location of the ser-

12

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

00:00 06:00 12:00 18:00 23:59

F
ra

ct
io

n
of

 P
re

fix
es

 R
eq

ui
rin

g
S

er
vi

ce
 U

pd
at

e

Time of Day

Regional (3277)
Backbone (3257)
Backbone (3303)

Regional (812)
Tier-1 (3356)

Figure 8: Stability of paths on January 21, 2010 for
five ASes monitored by RouteViews. Simulation assumes
prefixes are assigned services at midnight.

vice is restricted to the edges. This makes sense for two rea-
sons. First, those without location constraints simply have a
larger pool of service-performing ASes to choose from. If
x% of ASes support a service, but only y% of them are in
edge networks, those without constraints have (x − y)% of
ASes to draw upon that edge constrained requests can not.
Second, and more importantly, diversity occurs at the center
of the path, not at the endpoints. A service which is required
‘near source’ is either in the source AS, or in its provider
- which for 36% of networks in our dataset is only one AS.
Thus, a large fraction of ‘near source’ queries have only two,
fixed ASes to access services from. On the other hand, a ser-
vice which has no location constraints, or is expected near
the middle of the AS path, could be one of a much larger
number of well-connected Tier-2 or Tier-1 networks.

In summary, service availability drops for more demand-
ing service types, as would be expected given the constraints
of partial deployment. However, service availability can be
significantly improved even for more demanding service types
provided they tolerate some path inflation and/or allow some
flexibility in where service-providing ASes may be located.

6.5 Service Stability
The previous aspects of our evaluation focused on avail-

ability of services given static paths. Yet, BGP updates and
path withdrawals may remove paths which previously tra-
versed service-providing ASes. Thus, a FISP providing ac-
cess to a service interface in an external network must mon-
itor updates to ensure that the traffic continue to traverse
appropriate ASes, or inform the user that the service is no
longer available.

Methodology. Our simulator does not model updates,
since it requires only basic input (a relationship-annotated
AS graph) and generates static paths for all ASes. Instead,
we used real updates as observed by RouteViews [7] mon-
itors to evaluate how BGP updates and withdrawals would
impact service usage. We selected five ASes monitored by
RouteViews and loaded their prefix announcements. Then,

acting as a single-homed customer of that AS, we randomly
chose an AS on the path to every prefix and selected that AS
as a ‘service’ AS. For 24 hours, we monitored updates and
withdrawals announced by the provider AS and logged when
the paths to each prefix changed, and when those changes re-
sulted in the path no longer traversing our randomly selected
service AS. As single-homed stub ASes represent 36.3% of
ASes in our topology snapshot, we believe the single-homed
scenario to be a common case. In addition, we believe this
common case to be a worst-case scenario. Because ASes
with multipath peers have multiple options locally for path
selection, even if their default path revokes a path travers-
ing their service AS they are more likely to have an alternate
route which traverses the service AS.

Results. Figure 8 shows the fraction of prefixes over the
course of a day which experienced updates or withdrawals
that removed the service AS from the path to the desired
prefix. While over the course of the day, about 10% of the
prefixes experienced some update, only about half of those
updates removed the service AS from the path to the prefix.
In the worst case, AS 3277 (Regional) had 5.7% of prefixes
experience updates over the course of a day which removed
the service AS from the prefix path. The best case, AS 3356
(Tier 1), 3.7% of prefixes experienced such changes.

This reflects an upper bound on service reconfiguration
required by an AS and user. Just because a service AS is no
longer available in the default path does not mean that a sim-
ilar path is unavailable as a backup path from the provider.
Further, measurement studies show that the most commonly
used paths are generally stable, and that ASes experiencing
frequent updates are less popular [27]. Thus, we consider
the overhead of updating service state in case of path failure
to be manageable.

7. RELATED WORK
Programmable Network Architectures. Active Networks

[30] was perhaps one of the earliest proposals for a richer in-
teraction between users and the network infrastructure. How-
ever, as should be clear, our proposals are very different.
Where active networks allowed users to program their own
services directly into the network, we rely on ISPs to deploy
new services and only allow users the freedom of invoking
these services—a more limited but also more tractable ap-
proach. The recent Rule-Based Forwarding[26] (RBF) pro-
posal is closer in spirit to NetInvoke. In RBF, users write
simple rules that are executed by routers. Like NetInvoke,
RBF thus aims for a richer user-to-network interaction and
allows rules to invoke in-network functionality installed at
routers. However RBF does not address the question of how
users and ISPs discover and select these functions. There
are also several fundamental design differences: e.g., Net-
Invoke’s design builds in the means for ISPs to discover and
negotiate service use in a policy-compliant manner. In RBF,
how policy compliance is negotiated is external to its design
and hence RBF requires per-packet policy verification on the

13

datapath and a PKI to generate these certificates. More gen-
erally, RBF represents a clean slate replacement for IP while
NetInvoke only augments IP, resulting in different tradeoffs
as described in Sec. 5.

Integrating Middleboxes. We discussed research efforts
on integrating middleboxes [10, 29] in § 1. Within the IETF,
the Middlebox Communication Working Group [28] is es-
tablishing standards for communication directly with local
and explicitly-addressed middleboxes. However, this com-
munication layer does not provide the Internet-scale discov-
ery and federation of NetInvoke. Finally, Typed Network-
ing [25], recognizing that end hosts may not wish certain
processing to operate on their traffic, envisions a ‘negotia-
tion’ between middleboxes and end hosts. They propose an
architecture where middleboxes encountered along a user’s
regular forwarding path signal the user in order to allow the
user to opt out of such processing. This does not address
an opt-in capability and hence the discovery, federation and
other capabilities NetInvoke seeks to enable.

Programmable Routers. NetInvoke also relates to re-
cent research on building programmable network infrastruc-
ture[9, 15, 13, 24, 21]. These recent efforts focus on the
router-level architecture in support of such programmability
while NetInvoke tackles the network-level question of how
the capabilites enabled by such programmable infrastructure
should be exposed to end systems and applications. In this
sense, our efforts are complementary.

Tussles and innovation. Middleboxes and in-network
services more generally represent a potential ‘tussle’ point as
first articulated by Clark et al. [12]. We take inspiration from
their discussion and aim for a design point that balances con-
trol between both users and networks: users have the con-
trol to opt in/out of advanced processing while networks can
choose what services they offer and to which users. Finally,
our work is of relevance to recent community discussions on
enabling network innovation. Our proposed approach how-
ever, is more conservative than most—NetInvoke is not a
clean-slate architecture, nor does it offer solutions to hard
problems such as securing the network layer or improving
its reliability. Instead, we propose a path based on augment-
ing IP to enable incremental upgrades to the capabilities of
the network infrastructure.

8. CONCLUSION
We presented NetInvoke, a framework that allows user

applications to program against high level interfaces to in-
network services. NetInvoke provides a suite of interfaces
and algorithms that allow users to express their service de-
mands while giving networks control over whether and how
these demands are met.

We do not by any means expect that NetInvoke is the fi-
nal say in discussion of how to best integrate advanced net-
work processing into the network architecture. However,
we believe our contribution - a vision for high-level, pro-
grammable interfaces that provide access to federated ser-

vices across the entire network - moves the space forward
towards a practical design that is easy to use from the per-
spective of application developers, while providing network
providers a stake in selection, deployment, and profit from
advanced services.

9. REFERENCES
[1] Astaro: Security gateway. http://www.astaro.com.
[2] CAIDA AS relationships.

http://www.caida.org/data/active/as-relationships/.
[3] Narus: Real Time Traffic Intelligence. http://www.narus.com.
[4] Riverbed: Application Acceleration. http://www.riverbed.com.
[5] Sourcefire: Network Security. http://www.sourcefire.com.
[6] Symantec: Data Loss Protection. http://www.vontu.com.
[7] University of Oregon RouteViews Project.

http://www.routeviews.org.
[8] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the internet

impasse through virtualization. Computer, April 2005.
[9] M. B. Anwer, M. Motiwala, M. bin Tariq, and N. Feamster. Switchblade: A

platform for rapid deployment of network protocols on programmable
hardware. In SIGCOMM, 2010.

[10] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica,
and M. Walfish. A layered naming architecture for the internet. In SIGCOMM,
2004.

[11] B. Carpenter and S. Brim. RFC 3234: Middleboxes: Taxonomy and Issues,
February 2002.

[12] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in cyberspace:
defining tomorrow’s Internet. IEEE/ACM ToN, 13:462–475, June 2005.

[13] M. Dobrescu, N. Egi, K. Argyraki, B. gon Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. Routebricks: Exploiting parallelism
to scale software routers. In SOSP, 2009.

[14] Facebook. Facebook api. http://developers.facebook.com/.
[15] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: A GPU-accelerated

software router. In SIGCOMM, 2010.
[16] M. Handley and A. Greenhalgh. Steps towards a DoS-resistant Internet

architecture. FDNA, 2004.
[17] J. P. John, E. Katz-Bassett, A. Krishnamurthy, and T. Anderson. Consensus

routing: The Internet as a distributed system. In NSDI, 2008.
[18] E. Katz-Bassett, H. V. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van

Wesep, T. Anderson, and A. Krishnamurthy. Reverse traceroute. In NSDI, 2010.
[19] S. Kent, C. Lynn, J. Mikkelson, and K. Seo. Secure border gateway protocol

(S-BGP). IEEE Journal on Selected Areas in Communications, 2000.
[20] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs. R-bgp: Staying

connected in a connected world. In NSDI, 2007.
[21] G. Lu, C. Guo, Y. Li, Z. Zhou, H. Wu, Y. Xiong, T. Yuan, R. Gao, and

Y. Zhang. Serverswitch: A programmable and high performance platform for
data center networks. In NSDI, 2011.

[22] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker.
Controlling high bandwidth aggregates in the network. CCR, 2001.

[23] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards an accurate AS-level
traceroute tool. In SIGCOMM, 2003.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in campus
networks. CCR, March 2008.

[25] C. Muthukrishnan, V. Paxson, M. Allman, and A. Akella. Using strongly typed
networking to architect for tussle. In HotNets, 2010.

[26] L. Popa, N. Egi, I. Stoica, and S. Ratnasamy. Building extensible networks with
rule-based forwarding (RBF). In OSDI, 2010.

[27] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing stability of popular
destinations. In IMW, 2002.

[28] M. Stiemerling, J. Quittek, and T. Taylor. RFC 5189: Middlebox
communication (MIDCOM) protocol semantics, March 2008.

[29] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.
Middleboxes no longer considered harmful. In OSDI, 2004.

[30] D. Wetherall, U. Legedza, and J. Guttag. Introducing new Internet services:
Why and how. In in IEEE Network, May/June 1998.

[31] R. White. Architecture and deployment considerations for secure origin BGP
(soBGP). http://tools.ietf.org/html/
draft-white-sobgp-architecture-02, IETF Draft (expired), 2006.

[32] W. Xu and J. Rexford. MIRO: multi-path interdomain routing. In SIGCOMM,
2006.

[33] X. Yang, D. Wetherall, and T. Anderson. TVA: a DoS-limiting network
architecture. ToN, December 2008.

14

