
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Review for

Open Network Interfaces for Carrier

Networks

Aurojit Panda, Murphy McCauley, Amin Tootoonchian,

Justine Sherry, Teemu Koponen, Sylvia Ratnasamy,

and Scott Shenker

There is an active discussion about whether carriers should simply forward packets on behalf of

end-to-end services, or whether they should leverage in-network devices — middleboxes — to

improve the user experience. One thing is not under debate: middleboxes are pervasive in today’s

networks and they are unlikely to go anywhere soon. However, today’s middlebox services are

deployed in an ad-hoc manner, and they are owned, operated, and controlled by carriers with little

or no input from the applications they interpose on. This paper argues that instead of such a closed

approach to implementing in-network functionality, carriers should sell access to network function-

ality as a service with open interfaces, much like Amazon sells access to their EC2 infrastructure.

The authors sketch how to enable this vision, called Network Service Support, or NSS. They

discuss the entities involved, and the interfaces they can use to access in-network compute and

storage resources. While they do not focus on any particular instantiation or implementation of

a service built on open network interfaces, they do describe several expected systems that incorpo-

rate caching and video multicasting, among others.

The reviewers were generally positive about this position paper, but raised several issues and con-

siderations. Perhaps the biggest issue is one of incentives: why would a carrier sell access to their

infrastructure if it reduces their profit from transit charges or competing technologies (e.g., video

streaming)? Another common concern is that without Internet-wide standards for these open net-

work interfaces, it might be prohibitively expensive for an application provider to take advantage

of disparate NSS deployments. Regardless of the deployability of the approach, the reviewers

appreciated the vision and its potential. As we move to an Internet where content is increasingly

encrypted end-to-end, the NSS model may become the only way for carriers to support traditional

middlebox services — by bringing the end to the middle.

Public review written by
David Choffnes

Northeastern University, USA

a c m s i g c o m m

ACM SIGCOMM Computer Communication Review 5 Volume 46, Number 1, January 2016

Open Network Interfaces for Carrier Networks

Aurojit Panda‡, James McCauley‡, Amin Tootoonchian\†, Justine Sherry‡
Teemu Koponen�, Sylvia Ratnasamy‡, Scott Shenker‡\

‡ UC Berkeley, \ ICSI, † UToronto, � Styra
{apanda, jmccauley, justine, sylvia}@cs.berkeley.edu, amin@cs.toronto.edu

koponen@styra.com, shenker@icsi.berkeley.edu

ABSTRACT
With the increasing prevalence of middleboxes, networks today are
capable of doing far more than merely delivering packets. In fact,
to realize their full potential for both supporting innovation and
generating revenue, we should think of carrier networks as service-
delivery platforms. This requires providing open interfaces that
allow third-parties to leverage carrier-network infrastructures in
building global-scale services. In this position paper, we take the
first steps towards making this vision concrete by identifying a few
such interfaces that are both simple-to-support and safe-to-deploy
(for the carrier) while being flexibly useful (for third-parties).

1. INTRODUCTION
In the early days of the Internet, there was a very clear division

of labor between the network infrastructure and application devel-
opers. It was the network’s job to deliver packets quickly and reli-
ably, while it was the application developer’s job to build applica-
tions using the end-to-end model (i.e., expecting no direct network
support other than best-effort packet delivery). These early efforts
resulted in the seminal Internet applications on which we now rely
(email, the web, etc.). Most of these applications were built around
a client-server model, so that as the age of datacenter-scale services
arose the end-to-end protocols needed little change (though signifi-
cant innovation was needed to scale the internals of the datacenter,
including the networking infrastructure).

However, the world has changed greatly since those early days.
Two developments in particular have blurred this previously clear
division of labor between application developers and the network:
the rise of middleboxes (or network appliances) and the increasing
importance of the network edge.

Middleboxes have become the most common way of deploying
new in-network functionality, and according to a recent study [7]
most networks have roughly an equal number of routers, switches,
and middleboxes. Among the many middleboxes found in these
networks are HTTP proxies, SIP proxies, WAN optimization, deep-
packet-inspection, content caching, and content transcoding.

In the Internet age, Ben Franklin’s adage “time is money” has
become an empirically verified fact. Lowering response latency
keeps viewers longer, which translates into increased advertising
revenue. Placing services at the network edge helps reduce both
latency and the load on the network backbone. As a result, many
companies (e.g., Netflix, Google, and Akamai) have placed some
of their services at the edge. And this trend may accelerate as the
Internet-of-Things, with its potential for generating large volumes
of streaming data, will require even more edge data processing.

As a result of these trends, network involvement in Internet ap-
plications is both possible (due to the presence of middleboxes) and
desirable (given the importance of placing functionality at the net-

work edge, to reduce latency and backbone bandwidth). While we
continue to pay lip-service to a clean division between applications
and network infrastructure, and that model still suffices for some
applications where latency and bandwidth are not major concerns
(such as online banking), this is no longer the dominant reality.
Rather than resisting this trend, we should embrace it by viewing
network infrastructure not merely as a packet delivery mechanism,
but as a more general platform for supporting services.

Carriers (e.g., NTT and Verizon) are perfectly positioned to take
advantage of this trend. They have ubiquitous presence at the edge
of their own network and, due to the rise of SDN and NFV, can flex-
ibly insert middleboxes there. In addition, carriers have extensive
experience with 24/7 operations on their infrastructure. However,
carriers have not effectively responded to this opportunity. They
have attempted to build services themselves, such as CDNs, but
their efforts are widely seen as too-little-too-late and have had lit-
tle impact on the Internet ecosystem. While carriers can provide
premium connectivity to those providing popular services (e.g., the
recent Netflix-Comcast deal), and allow third-parties (such as Aka-
mai and Netflix) to place equipment at the carrier edge, their infras-
tructures are still designed primarily around packet delivery.

We advocate a much more active role for carrier networks, one
that is best motivated by considering the history of Amazon’s EC2
service. To support their own business, Amazon built a set of large
datacenters. They then recognized that these datacenters could be
useful to others, and that offering up this computational infrastruc-
ture as a service could be profitable. To take advantage of this op-
portunity, they developed a tenant-facing service interface (the EC2
VM interface) that had six important properties (where we use the
term tenant to refer to EC2 customers):
• Simple to support: The VM interface is well-established,

and required little technical innovation to support.
• Safe to deploy: VMs provide isolation (protecting both other

tenants and Amazon itself) and Amazon carefully manages
resource allocations; the combination ensures that a tenant’s
use of EC2 poses no threat to Amazon, or other tenants (in
terms of security and resource usage).
• Self-service: No manual intervention by Amazon is needed

for a tenant to use the EC2 service.
• Usage-based: Tenants are charged based on usage, and

(for small resource requirements) do not have to reserve re-
sources in advance. Moreover, tenants that are more forgiv-
ing of failures can use cheaper options, such as spot-pricing,
that are less reliable.
• Flexible: One can develop useful services using this inter-

face, and the space of services enabled by the infrastructure
far exceeds what anyone could have envisioned. In fact, the
Amazon business model had the flavor of “we don’t know

ACM SIGCOMM Computer Communication Review 6 Volume 46, Number 1, January 2016

the future, but we sure hope someone builds it on our in-
frastructure”, which is a way of profiting from grass-roots
innovation.
• Narrow: The service interface is narrow enough that Ama-

zon had the freedom to innovate in how it was implemented,
allowing it to improve the efficiency of its infrastructure
without changing the interface.

The fact that EC2 was self-service and usage-based lowered the
barrier-to-entry for these datacenter services, opening the world of
large-scale computing to everyone (in fact, in 2011 one could rent
the 30th fastest supercomputer for a little over $1000/hour!). This
enabled everyone to scale services without running their own in-
frastructure. Amazon’s ability to support scalable services, while
protecting their own infrastructure, has spurred innovation in Inter-
net services and made Amazon a tidy profit in the process.

In this paper, we propose an initial step carriers could take to
emulate the EC2 example. We call our system NSS, for Network
Service Support, and put it forward not for the sake of the carriers,
whose business prospects are not our concern, but to hopefully in-
crease the rate of innovation in network services and broaden how
we think of the network service model. Our focus is not on the
design details or implementation issues, but instead on the basic
interfaces operators could expose and how they might be used.

NSS is exceedingly simple for carriers to build, and exposes an
interface with three main components:
• Tenant-facing invocation interface: This is how the tenant

invokes NSS, and describes the desired high-level applica-
tion interaction pattern. This interface abstracts away low-
level details, enabling seamless changes (by both tenants and
carriers) in the low-level infrastructure.
• Client-facing primitives: These include registration and

name resolution.
• Edge services: These are services, such as caches or fire-

walls, that the tenant can instantiate at the edge (through the
invocation interface).

NSS has the same six properties as listed above for EC2, and
enables third-parties (tenants) to build services, offered to clients
(customers of the tenant), that leverage the network infrastructure.
Thus, NSS allows application designers to focus on what they do
best – searching for unmet needs and figuring out the right way to
meet them – and lets the network infrastructure make deployment
simpler (because the application designer can use a set of basic
primitives, and need not worry about how to scale the network-
based portion of the service) and more effective (given the proxim-
ity to the edge).

This obviously resembles current systems like Akamai, which
uses edge caches and name resolution to speed content delivery. In
fact, that’s our point! Systems like Akamai are extremely valuable
and our goal is to make them easier to deploy. We discuss later how
NSS could trivially support an Akamai-like service with very little
tenant-supplied infrastructure.

Our approach imposes no significant changes on applications,
in terms of the interactions between clients and servers. This is
because we are not exploring new application architectures, only
new deployment and configuration models for network-based ap-
plications. Our approach lets functionality be placed at the edge
where needed (i.e., where the clients are), without the tenant need-
ing to know beforehand where these clients might arise nor having
to deploy the edge functionality themselves. Moreover, the config-
uration (in terms of who the client contacts to access a particular
service) is handled by the service primitives we have designed. In
this sense, our approach is similar to SDN, which did not change

how packets are forwarded, but did change how that forwarding
behavior is computed and configured.

We are certainly not the first to write about the role of networks
in supporting services. There has been recent research on enabling
service invocation [8], which exposes various network services to
end users. This rightly moves service invocation from implicit dat-
aplane actions to explicit control plane interfaces. But our focus is
on service construction, using the existing network infrastructure,
which is quite different (and complementary). There has also been
a long history of work on service composition [5, 6], and more re-
cent developments with an emphasis on the cloud [4], but this typi-
cally involves chaining together several high-level services, such as
file servers, databases, and the like, and requires interfaces suitable
for general distributed programs. Our focus is on utilizing a narrow
set of low-level network services, so our interfaces need not be so
general or work in such a broad set of contexts. Thus, our problem
is far easier, and we do not have to confront the deeper problems
explored in the general service composition literature.

Of course, the technical community has been actively develop-
ing the SDN and NFV paradigms (with a burgeoning literature),
which are useful mechanisms for implementing what we describe
here, but neither directly address the question of how one uses the
network to seamlessly support third-party applications.

2. IDEALIZED SCENARIO
In this section we move beyond motivation to a discussion of

how this NSS might be used in a highly-idealized scenario (where
all complicating details are omitted). Consider for instance an ap-
plication designer (henceforth referred to as the tenant) who would
like to deploy a new CDN specifically tuned for video content that
would benefit from network support. She begins by dividing func-
tionality between the client (which runs on one or more user de-
vices), a cache service (running at the network edge) and the back-
end servers (running in a cloud) where the content is hosted.

She then picks cache and server implementations that meet her
application requirements, with the only NSS-specific requirement
being that the client code uses NSS-supplied primitives for boot-
strapping. To deploy this service she now contacts the carrier to
find the name of a Coordinator (a carrier portal) and provides the
Coordinator with an instantiation consisting of:(i) a template that
describes and names the components of an application (i.e., client,
cache and origin server in this case) and indicates how they inter-
face; and (ii) metadata specifying the location of back-end servers,
application code that needs to be executed at the network edge, and
other configuration parameters.

The carrier then activates instances of this service at various net-
work edges in response to clients connecting at those edges. When
clients first connect to the network, a bootstrap mechanism (DHCP
or others) provides the client with the address for the Coordinator
which the client then registers with. On registration the Coordina-
tor provides the client with a handle for a Discovery service. The
application then uses the Discovery service to find the cache.

While the template – which dictates the overall structure of the
application – remains fixed, a tenant can evolve an application by
changing the metadata, which can: change the set of services in-
voked at the network edge (e.g., to introduce transcoding), change
the software deployed at the network edge (e.g., upgrade the soft-
ware or update its configuration), or change the location of back-
end servers. None of this requires manual intervention by the car-
rier; these updates are sent by the tenant to the Coordinator (us-
ing either a programmatic interface or manually through a portal),
which then implements these changes where appropriate (at the
edges, or in the Discovery service).

ACM SIGCOMM Computer Communication Review 7 Volume 46, Number 1, January 2016

We now provide more technical details to flesh out how this
works in practice.

3. ENTITIES AND INTERFACES
We now provide more details on the entities involved and the ba-

sic tenant and client interfaces. We hope it is self-evident that these
interfaces are simple, safe, self-service, flexible, and narrow, and
could easily support usage-based charging (which are the proper-
ties we cited in the introduction as having been crucial for EC2).

3.1 Entities
In addition to allowing applications to invoke an extensible set

of edge services (i.e., VMs running tenant-supplied or operator-
supplied code), NSS provides each application with two simple en-
tities: a Coordinator and a Discovery service.

• Coordinator: The Coordinator is responsible for bootstrap-
ping applications. The Coordinator is provided by the carrier
and is shared across applications.1 The coordinator also pro-
vides the tenant interface; tenants first invoke NSS by con-
tacting the Coordinator and handing it an instantiation con-
sisting of a template and metadata.

• Discovery service: The Discovery service is responsible for
binding application-specific names to addresses, and can re-
quire authentication before using. The Discovery services
uses tenant-specified metadata for these resolutions.

These two entities are responsible for supporting the tenant and
client interfaces.

3.2 Tenant Interface
Tenants interact with the carrier through the carrier’s Coordina-

tor. The Coordinator provides an interface for instantiating appli-
cations, and the input to this interface is comprised of two parts:

• Template: The template describes the basic structure of the
application, by naming the components involved and spec-
ifying the dataflow between them. The application compo-
nents include tenant-managed servers and carrier-managed
edge services. Tenants can in turn delegate the management
of their servers to others: the term tenant-managed only im-
plies that the tenant is responsible for providing them, as op-
posed to the carrier-managed edge services which are oper-
ated by the carrier.

As an example, for the CDN service (Section 2) the invoking
template would be:

Client→ Cache Service→ Origin Server

Upon receiving such a template, the Coordinator returns (to
the tenant) a handle for each of the application components,
so the tenant can change the metadata associated with each
of these components.

• Metadata: The tenant supplies the Coordinator with meta-
data for each application component. This metadata in-
cludes:

– Names for all application components, and whether
they are carrier-managed or tenant-managed

1While the Coordinator is shared across applications, its state is
partitioned by application and hence applications are isolated from
each other.

– For tenant-managed servers, the metadata includes IP
addresses for tenant-managed servers and other rele-
vant information (e.g., certificates to ensure the validity
of the server).

– For carrier-managed edge services, the metadata speci-
fies what services to provide at the edge. If the edge ser-
vice is carrier-supplied, the metadata contains enough
information to specify and configure that code. If the
edge services is tenant-supplied, the metadata includes
a pointer to the executable and related information (re-
source requirements, version number, etc.). This meta-
data can be updated as needed.

3.3 Client Interface
Client code can have an arbitrary application-specific interface

(e.g., in our CDN example, NSS does not constrain the interface
between the client and the cache), but the client interfaces that con-
cern us here involve how the client interacts with NSS. Clients in-
teract with NSS in two specific ways:

• Coordinator: Each client, when they connect to a new net-
work, register with the Coordinator. The Coordinator might
redirect this registration so that the client first authenticates
(as specified in the template). Once a client is registered, it is
given the location of the tenant-specific Discovery service.

• Discovery service: Clients use the Discovery service to re-
solve application-specific names (the Discovery service is
not just a local copy of DNS, but rather can implement its
own name resolution mechanisms). The resolution results
can be local in nature, in that the tenant-specified meta-
data can contain results tailored to each edge, or they can
be global (e.g., application back-end servers). Client can
include authentication token with request, as some bind-
ings might be available only to appropriately authenticated
clients.

For certain classes of applications (e.g., mobile applications),
it might be beneficial to avoid the additional RTT involved with
sending requests to the discovery service. In this case NSS allows
the use of a more proactive version where the Coordinator returns
name-address bindings for the components of a tenant edge appli-
cation rather than the location of a Discovery service. While this
avoids the round-trip to get name bindings it reduces the amount of
flexibility available: servers and instances of network components
must preserve the same address over the course of the application’s
lifetime.

3.4 Carrier Implementation
While the purpose of NSS is to make life easier for application

developers (to invoke network support), does this make life hard for
the carrier? As the preceding description hopefully makes clear, the
answer is clearly no. To build and deploy NSS, a carrier needs only:
(a) build a simple portal to serve as Coordinator, (b) build a sim-
ple name resolver to serve as the Directory service, and (c) deploy
racks at their edge that can spin up VMs on demand, thereby instan-
tiating the required edge services (most of which are easily avail-
able, like firewalls, or are supplied by the tenants themselves). To
validate our idea we built a prototype of the primitives and several
applications which made use of them. In our implementation the
primitives themselves took only 2,600 lines of C++ code2 and took
less than a week of programmer time. Thus, we believe building
NSS involves only standard software engineering best practices.
2As measured by David A. Wheeler’s SLOCCount tool.

ACM SIGCOMM Computer Communication Review 8 Volume 46, Number 1, January 2016

4. EDGE SERVICES
Allowing applications to utilize services running at the network

edge are the key feature enabled by NSS. We envision that these
will be provided by both tenants (for services tuned to a specific
applications) and carriers (for commonly used services). We as-
sume most edge services will run as VMs (as in NFV) on tradi-
tional software servers deployed at the edge of the network. Many
existing service implementations can be deployed at the network
edge almost unmodified. However, since carriers will deploy these
edge services on-demand, at multiple network edges, these services
must meet a few requirements that we highlight below.

4.1 Edge Service Requirements
To allow carrier to deploy services at multiple network edges and

so these services can be started and stopped on-demand, we require
that:

• Edge services rely on configuration that is location and scale
agnostic. In particular, the correct and efficient functioning
of edge services should not depend on the number of copies
running on the same network, and the edge service should
make no assumption about the geographic location or the IP
address for the VM in which it is executed.

• Edge services send requests to other services by name, i.e.,
edge services must themselves use the Discovery mechanism
provided by NSS rather than using hardcoded addresses for
services. The use of names instead of addresses allows carri-
ers to launch and teardown individual edge service instances
without affecting application functionality.

• Edge services store state in a manner than enables elastic
scaling; i.e., state that needs to persist across multiple ses-
sions from the same user is persisted elsewhere (not on the
edge services).

• Consistency between edges must be handled explicitly, for
instance with the use of a central server to which all edge ser-
vices talk. This limitation means that applications supporting
transparent mobility must provide mechanisms to synchro-
nize user sessions across edges.

While these requirements seem stringent, many existing services
(caches, SIP proxies, etc.) already meet these requirements. Fur-
ther, services meeting these requirements can be trivially scaled
(even on the same edge) by launching additional copies.

We expect that these requirements themselves would evolve over
time, in particular many of these requirements can be eliminated
by the addition of other features. For instance, carriers can divide
the network edge into coarse grained availability zones and allow
tenants to restrict their instances to particular availability zones.
Similarly, carriers can provide state management services and thus
enable edge services that require more permanent state. In addition,
in the future one might want to add monitoring hooks as a require-
ment, so that tenants could more easily monitor (and debug) the
global operation of their applications. Thus, the requirements here
are merely a first step and are designed to simplify the development
and deployment of NSS.

4.2 Example Services
Next we present a few example edge services. We mostly list ser-

vices that are general and commonly used, and hence might be pro-
vided by carriers. Some applications would undoubtedly provide
their own edge services (e.g., for application-specific transcoding
or data processing).

Caches: The ability to deploy caches at the network edge can
greatly reduce traffic through the network core and perceived client
latency. Additionally, many carriers already provide caches as a
part of CDNs.

Client Registration: A client registration service can add name
bindings (accessible through the Discovery mechanism) for clients
at the network edge. This can be used for a variety of purposes in-
cluding finding all devices belonging to a user connected to a par-
ticular edge and finding all devices that have specific content. The
registration service can accept an authentication token that must be
provided to discover certain bindings.

Authentication: A carrier (or other provider, for instance
Google) might choose to offer an authentication mechanism that
can be optionally used by tenants. Such an authentication service
would be token based (e.g., based on Kerberos), and requires clients
to authenticate using credentials provided by the provider.

5. EXAMPLE USAGE
Moving beyond the CDN example of Section 2, and obvious ex-

tensions such as SIP proxies, we now look at a few examples of
more complicated applications that could be supported by NSS.

5.1 Edge Based Multicast
Video content providers often need to transfer the same con-

tent to multiple devices. This might be either for live streaming
(for sports events, lectures, etc.) or for other cases where we want
users to be able to watch the same video stream on multiple devices
seamlessly. While one can solve this problem by running several
unicast streams, doing so increases utilization on the transit links.
In a network where services can be placed at the edge of a network
one can instead send a single stream to an edge service, which can
replicate and send it to all local clients. A multicast overlay like this
requires no internal network support from the carriers, and works
across carriers.

Instantiation and Usage
Template:

Origin Server→ Edge Proxy→ Clients

Metadata: The Edge Proxy is the only carrier-instantiated ap-
plication component. Metadata in this case provides an address for
the origin server. The tenant can require that clients authenticate
before getting access.

Usage: Once this template has been instantiated by the carrier,
clients initiate sessions (for particular streams) with the edge proxy.
The edge proxy is responsible for receiving the stream from the
origin server and multicasting it to all local clients. Edge proxies
can subscribe to streams from the origin server either on demand
(i.e., when they have active sessions for a stream) or proactively.

As an alternative, the edge proxy can proactively initiate sessions
for popular streams (for instance World Cup games) with the origin
server ahead of time thus reducing initial latency for all clients.

5.2 ICN
Previous work has argued that Information Centric Networking

[2,3], where content can be accessed using names instead of requir-
ing clients to provide IP addresses, can lower response latency, pro-
vide additional security and better mobility and reduce bandwidth
consumption. Recent work [1] has shown that one can achieve most
of these benefits using name-based caches at the edges. Using our
mechanisms a tenant can deploy a system similar to what was en-
visioned by [1] without requiring any additional carrier support.

ACM SIGCOMM Computer Communication Review 9 Volume 46, Number 1, January 2016

Instantiation and Usage
Template:

Client→ Proxy→ Name Resolution→ Origin Server

Metadata: The proxy and possibly the name resolution service
are carrier instantiated. The tenant can require clients to authenti-
cate before obtaining access.

Usage: Clients can use this service exactly as described in [1]:
requests for named data are sent to the proxy which either responds
to these from its local cache or uses the name resolution service to
locate the data in the origin server. This name resolution service
can be tuned to support flat names, thereby supporting arbitrary
naming systems (and, in particular, content-centric names).

5.3 Storage Synchronization
Storage services such as Dropbox, Box and AeroFS synchronize

content across user devices. To lower latency and reduce data sent
through the network core these services include support for syn-
chronizing local clients (i.e., devices connected to the same local
network) without involving a remote storage server. In this case,
the Discovery service can allow clients to discover all other local
clients, greatly simplifying the development of such applications.

Instantiation and Usage
Template:

Client→ Authentication→ Client Registration

Metadata: Application registration is carrier instantiated. De-
pending on the service an application writer can choose to use a
carrier-provided authentication service or one provided by third-
parties.

Usage: Once authenticated, clients can contact the application
registration service to be added to the list of clients belonging to
a user currently connected to a network edge. This mapping is
maintained (and queried) using the Discovery service at the local
edge.

5.4 Edge Processing for Sensors
Recently, there is growing interest in collecting and aggregating

data from sensors embedded in “smart” objects, which form the In-
ternet of Things (IoT). As a whole these sensors can generate huge
amounts of data; for instance it is reported that the engines on a
Boeing 777 generate over 4 terabytes of data during a trans-Atlantic
flight. Transferring this raw data to data centers for processing can
be costly and contribute to congestion at the core. Often, the data
can be processed, either to limit its size while retaining information
required for processing or to speed up initial analysis [9]. Tenants
can use our mechanism to perform this processing, on-demand, at
the edge.

Instantiation and Usage
Template:

Sensor→ Processing→ Data Center

Metadata: Tenants supply code for the processing service: since
the functionality is dependent on both the sensor and the query be-
ing executed this might be highly-specialized for each client.

Usage: Sensors lookup and send traffic to edge processing units
which then forward the processing results to the data center. Clients
can issue queries and look at results by connecting to the data cen-
ter.

5.5 Middlebox Outsourcing
Recent work [7] has also proposed outsourcing middlebox func-

tionality to data centers, both to simplify administration and take
advantage of consolidating this functionality for several enter-
prises. This work proposed outsourcing this functionality to a data
center, where these middleboxes are run on virtual machines. Us-
ing NSS one can instead outsource this functionality to the network
edge, rather than to the middleboxes and thus potentially reduce la-
tency. This is also an example where traffic is sent through the
service transparently.

Instantiation and Usage
Template:

Traffic Class→ Middlebox Pipeline

Metadata: The metadata in this case specifies the middlebox
pipeline (a sequence of middleboxes, or more generally a DAG of
middleboxes), and the configuration of each middlebox.

Usage: All packets belonging to the specified traffic class are
forwarded to the middlebox, which then processes this traffic and
forwards it as appropriate.

6. DISCUSSION
Before EC2, a company could only offer a global service once

it had learned how to scale its infrastructure (e.g., run a datacen-
ter, etc.) and sufficiently invested in the infrastructure. After EC2,
companies could focus on meeting customer needs and let Amazon
worry about scaling the infrastructure. This has had made it far eas-
ier to bring new service ideas to large markets. Network operators
are in a similar position to where Amazon was when first building
EC2: the demands of NFV have meant that they are deploying gen-
eral purpose compute servers at the network edge. These servers
are meant to help ISPs rapidly deploy new features, but are nec-
essarily underutilized at most times. NSS, similar to many other
recent proposals, is therefore inspired by the presence of this spare
capacity, but aims to allow application developers, not just ISPs
make use of this capacity.

We hope that, similar to EC2, NSS will enable application devel-
opers to build and deploy network supported services, without wor-
rying about scaling or building out network infrastructure. Right
now there are several companies that have significant deployments
at the edge (e.g., Google, Akamai, Netflix); competing with them
would require a new entrant to make a similar infrastructure invest-
ment, precluding all but extremely well-funded and targeted efforts
from mounting a challenge. With NSS, one could deploy a wide
variety of edge-based services with very low barriers-to-entry, and
we think this might facilitate more rapid innovation in this space.

While one can debate whether NSS will have impact, it is clearly
feasible for carriers to build and deploy. The Coordinator and Dis-
covery components are straightforward, and carriers can easily de-
ploy racks at the edge to support the required edge services. In this
sense, NSS’s lack of technical depth is a feature, not a bug. The
point of our position paper is defining and supporting open network
interfaces for application support is trivially within our reach.

The most challenging open question that remains is this: do car-
riers compete or collaborate in offering NSS? If they compete, then
each carrier offers a NSS-like interface, and individual third-parties
can decide how many they need to sign up with to provide ade-
quate edge deployment. Competition might lead to faster adoption
of NSS-like interfaces, as carriers seek to beat their competitors to
market.

ACM SIGCOMM Computer Communication Review 10 Volume 46, Number 1, January 2016

If they collaborate, then NSS’s interface becomes a standard
and network interface generalizes from simple packet delivery to
a more service platform. This would represent the next step in the
evolution of the Internet, in which edge services become a fully in-
tegrated aspect of carrier networks. This would require solving the
question of how carriers peer at the NSS level, so that deployment
happens at all edges, regardless of the carriers (i.e.,, if a tenant has
signed up for service with one carrier, how does that carrier arrange
for other carriers to support that tenant). This is less a technical
question than an economic one; technically, it is trivial to dissemi-
nate the instantiation information across carriers, but economically
it may be hard to agree on the compensation for such peering.

Regardless of how the competition/collaboration is resolved, we
believe that incorporating service support is an opportunity whose
time has come. The relevant technology (particularly given the ad-
vances in SDN and NFV) is readily available, and the overall archi-
tecture is conceptually simple and straightforward to build.

7. ACKNOWLEDGMENT
We thank the anonymous reviewers for their helpful comments

and suggestions which have helped improve this paper. This re-
search was supported in part by NSF grants 1343947 and 1420064,
and funding provided by Intel Corporation.

8. REFERENCES
[1] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi,

T. Koponen, B. Maggs, K. Ng, V. Sekar, and S. Shenker. Less

pain, most of the gain: incrementally deployable icn. In Proc.
of SIGCOMM, 2013.

[2] V. Jacobson et al. Networking Named Content. In Proc. of
CoNEXT, 2009.

[3] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica. A Data-Oriented (and Beyond)
Network Architecture. In Proc. of SIGCOMM, August 2007.

[4] OpenCloud. Retrieved 07/16/2014:
http://opencloud.us/.

[5] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren, and
A. Vahdat. Service placement in a shared wide-area platform.
USENIX ATC, 2006.

[6] F. A. Samimi and P. K. McKinley. Dynamis: Dynamic overlay
service composition for distributed stream processing. SEKE,
2008.

[7] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes Someone
Else’s Problem: Network Processing as a Cloud Service. In
Proc. of SIGCOMM, 2012.

[8] J. Sherry, D. C. Kim, S. S. Mahalingam, A. Tang, S. Wang,
and S. Ratnasamy. Netcalls: End Host Function Calls to
Network Traffic Processing Services. Technical Report
EECS-2012-175, UCB, 2012.

[9] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. Sciborq:
Scientific data management with bounds on runtime and
quality. CIDR, 2011.

ACM SIGCOMM Computer Communication Review 11 Volume 46, Number 1, January 2016

http://opencloud.us/

	p06-v46n1703b-pandaA.pdf
	Introduction
	Idealized Scenario
	Entities and Interfaces
	Entities
	Tenant Interface
	Client Interface
	Carrier Implementation

	Edge Services
	Edge Service Requirements
	Example Services

	Example Usage
	Edge Based Multicast
	ICN
	Storage Synchronization
	Edge Processing for Sensors
	Middlebox Outsourcing

	Discussion
	Acknowledgment
	References

