Applications of the IP Timestamp Option to Internet Measurement
Justine Sherry

A senior thesis submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science
With College Honors

Computer Science & Engineering
University of Washington

March 2010
Updated June 2010

Abstract

Limited support and inconsistent behavior for IP options has led to the common belief that
most options cannot be useful. IP timestamp was no exception, until recently, when prespecified
IP timestamp measurements were successfully integrated into the Reverse traceroute system.
Prespecified timestamps allow the sender to request a series of up to four timestamps from all
routers which may receive the packet. Each machine that receives a timestamp probe checks to
see whether the next, unstamped IP address matches its own, and if so, provides a timestamp.

In this paper, we provide a more extended argument for the role of prespecified timestamps in
the measurement toolkit, and demonstrate two new practical use cases for timestamp measure-
ments. We discover over 47% of ICMP ping-responsive routers in our sample support timestamp
options, and both document and suggest methods for dealing with some of the differences be-
tween implementations of the timestamp option. Where supported, timestamp probes can take
advantage of several attributes uncharacteristic of other common measurement tools: a view of
the complete path the probe takes, combined responses from up to four requested addresses,
and timestamp values from each responsive address.

Tllustrating these characteristics, we provide several use cases for timestamp probes. First, we
describe how timestamps are integrated into the Reverse traceroute system, discovering routers
on the path taken from a destination back to the requesting source. Next, we confirm IP aliases
by combining multiple timestamp requests for candidate alias pairs in the same probe. In our
application, we identify thousands of alias clusters currently unaddressable by the leading alias
resolution technique. As our final use case, we apply the literal timestamp values to assessing
one-way link delay. With this technique, we measure the delay between backbone PoPs on the
Internet2 network with values comparable to those discovered through measurements at the
source.

Presentation of work given on February 23, 2010
Thesis and presentation approved by:

Date:

Contents

1 Introduction
2 Background
2.1 Prespecified Timestamps as Defined
2.2 Notation e e
2.3 Previous Work with Timestamps
3 Timestamps as Implemented
3.1 Responses to Direct Probing
3.2 Anomalous Behaviors
3.3 Responses to Requests In Transit,
3.4 Timestamp Values e
4 Reverse traceroute
4.1 Timestamps within Reverse Traceroute
4.2 Modifications to Base Technique,
4.3 Inferring Forward and Reverse Path Stamps
4.4 Spoofing to Isolate Reverse Path 0 0oL
4.5 SUummary e e e e e e
5 Alias Resolution
5.1 Applying Timestamps to Alias Resolution
5.2 Evaluation oL e
5.3 Alias Resolution in Context
6 Delay
6.1 Measuring Delay with Timestamps,
6.2 Evaluation e
6.3 Next Steps o
7 Conclusions
Acknowledgements
References

10
11
13
16

17
17
18
18

19

19

19

1 Introduction

Internet measurement aims to provide descriptive data about the topology, latency, and traffic flows
of the global Internet, and make use of this data to better understand how to debug and improve
the Internet. The Internet is controlled by many parties and made up of diverse smaller networks.
This leads to a situation in which everyone benefits from greater understanding of the network,
but no individual group is in control of the entire network and able to make all such information
available. As a result, information about very simple properties of far-away connections in the
network is useful to many, but difficult to obtain.

Active measurements, sending out specially crafted packets to targeted destinations in order to
analyze the responses received, can answer many questions about paths or routers on the Internet,
regardless of who controls the network. For example, traceroute [1] is a popular tool which reveals
the IP-level forward path taken by packets to a distant host, identifying every router along the way
from source to destination. However, many important questions remain difficult or unaddressed by
current active probing techniques.

Several optional extensions to the IP (Internet Protocol) header (a preamble affixed to every
packet that traverses the Internet) are defined with manipulation for measurement and debugging
in mind. However, most research has dismissed IP options for presumed lack of support, filtering,
and inconsistent implementation [2]. On the other hand, several recent works [3, 4, 5] used the
Record Route option, in which each machine forwarding the packet records its address to the packet
header (limited to the first 9 hops).

This thesis investigates another such IP option, the Prespecified Timestamp Option. Contrary
to previous understanding, we find support of the option to be sufficient for many applications.
Furthermore, we demonstrate that timestamps have unique attributes which make them useful
towards measuring several properties of the Internet that have remained difficult or impossible
with current measurement techniques.

In Section 2, we describe in detail the specification and history of the timestamp option. In
Section 3 we address claims of poor support and inconsistent implementation. We discover over
47% of ICMP ping-responsive routers in our sample providing some form of timestamp support.
By documenting router-specific implementations of the option, we demonstrate that, rather than
inconsistent, responses to timestamp requests are predictable and dependable.

Sections 4 - 6 describe how timestamps can be applied to a variety of practical measurement
challenges. In Section 4, we demonstrate one application of timestamp measurements: visibility
into the reverse path (from destination to source) taken by a packet. Although traceroute makes
identification of routers on the forward path easy, the reverse path has remained an elusive portion of
the path traveled by a packet throughout this time. In Section 5, we provide another application of
timestamp measurements: IP alias resolution. In this section, we develop a technique for validating
when different IP addresses belong to the same machine using timestamp requests that prespecify
multiple addresses within the same probe. In Section 6, we provide a third application: measuring
one-way link latency between routers. We show how to use timestamp values from probes crossing
the link to evaluate the latency of the link. Finally, we conclude in Section 7.

2 Background

2.1 Prespecified Timestamps as Defined

Timestamp requests are an optional extension to the IP header affixed to every packet that traverses
the Internet [6]. Three ‘flags’ specify different behaviors of the Internet Timestamp option; the

focus of this thesis is flag 3, ‘prespecified timestamps.’ For a packet with the prespecified timestamp
option enabled, the sender lists up to four IP addresses in the options header. A pointer is initialized
to the index of the first prespecified address.

Each machine that receives and forwards the packet will inspect pointer, and evaluate whether
or not its own address is the address targeted by the pointer. If it does indeed own that address, it
provides a timestamp consisting of milliseconds since midnight Coordinated Universal Time (UTC),
and increments the pointer to the subsequent listed address. Note that a machine may own an
address and not provide a timestamp, either because the pointer has been incremented past the
listed address (it has received that packet before), or because the pointer has not yet reached its
address.

It is permissible to provide a value other than a timestamp in the required format. So long as
the most significant bit of the timestamp value is high, anything else may be placed in the other
31 bits.

2.2 Notation

To describe a packet sent with a prespecified timestamp request, we use the following notation:
(D|ABCD)

Where D is the destination of the request, and A, B, C, and D are the addresses specified (in
order) in the timestamp option. We may list less than four addresses after the pipe if less than four
addresses were prespecified. In cases where the source address requires description, we include a

source S
(S — D|ABCD)

Finally, when we use source address spoofing, sending a probe from a vantage point V with a
different source address S listed in the header as the source, we write:

(V/S — D|ABCd)

In our studies, we always include the timestamp option with an ICMP ping, although any other
payload may be used.

2.3 Previous Work with Timestamps

Fonseca et al. [2] investigated timestamps and other IP options with the conclusion that IP options
were not useful for measurement. While many of their criticisms of IP options are indeed downsides
to using IP options, one aim of this work is to demonstrate that ‘workarounds’ to the few limitations
of timestamp measurements are indeed possible. With these workarounds, in combination with the
benefits of timestamp measurements, we argue that timestamp measurements are indeed a practical
measurement tool.

With reverse traceroute, we were the first to make major use of prespecified timestamps as part
of the reverse traceroute measurement system [5]. Some of this work is elaborated on in section 4.

3 Timestamps as Implemented

The specification for prespecified timestamps [6] leaves some ambiguity about correct implemen-
tation of the timestamp option. One important piece of functionality left completely undefined
is the appropriate response to successive timestamp requests within the same probe for the same

Classification | Number of IPs | Percent of Total IPs
Unresponsive 83002 31.0%
Extra Stamp 15606 5.8%
Zero Stamps 41422 15.5%
One Stamp 40886 15.3%
Two Stamps 59450 22.2%
Three Stamps 40 0%
Four Stamps 27330 10.2%
| Total \ 267736 100% |

Table 1: Responsiveness to timestamp probes for a set of 267,736 public, ICMP-responsive addresses
discovered by iPlane on May 10, 2010. Each address D was sent a probes requesting (D|DX X X)
and (D|DDDD).

address. Should a destination D respond to (D|DDDD) with one or many timestamps? Another
open-ended issue is raised by the possibility of non-standard timestamp values being marked on
the probe. What types of values might an administrator wish to provide, if not time?

In this section, we investigate implementations of the timestamp option by routers active on
the Internet. We also examine the literal timestamp values and the occurrences of non-standard
timestamps (3.4) and document anomalous behaviors (3.2).

3.1 Responses to Direct Probing

To investigate actual implementations of the IP timestamp specification, we probed a set of ad-
dresses discovered by iPlane [7] on May 10, 2010. iPlane includes traceroutes for hundreds of
vantage points to 140,000 prefixes daily. After filtering targets by probing each address with a
simple ICMP echo request to test responsiveness, we were left with 267,736 responsive addresses.
We sent each address D a request for its own address, in combination with another address X,
belonging to a machine at the University of Washington and known not to be on the path to or
from D. We probed each address redundantly from 10 distributed vantage points, with requests
for the destination’s own address D 0-4 times, followed by a request for X to pad the request up
to 4 prespecified addresses (D|XXXX,D|DXXX,DIDDXX,...). We included the X to ensure
that extra, invalid stamps were not being introduced into the responses we received.

We received timestamped responses from 47.7% of our targets and unstamped responses from
15.5% of targets. The remainder were unresponsive, either due to the router not accepting times-
tamp requests, or filtering along all attempted paths to the target. We found a variety of behaviors
in the responses from our targets, for which percentages are in Table 1. The first four categories
represent a “stamp count.” Some would provide up to four timestamps for their own address, while
others would provide timestamps only once or twice at maximum. However, there were cases of
inconsistency (‘Extra Stamp’), in which an address which had provided two stamps previously to
a request for multiple stamps might respond later to an identical probe with only one stamp. We
found that these ‘Extra Stamp’ implementations were common to all Linux hosts we tested.

We document additional, anomalous behaviors (‘Other Anomalous’) in section 3.2.

3.2 Anomalous Behaviors

Over the course of our study, we encountered several anomalous response patterns. While these
behaviors were rare, they had the potential to provide misleading or confusing information. We

document some of these responses below.

Overstamping. 5.8% of responsive addresses we encountered in our study provided an ‘extra’
timestamp, with two timestamps provided for a request (D|DXXX), the second being invalid
because X was not on the path to or from D. All machines running the Linux operating system
that we have tested displayed this bug.

Misaligned Stamps. We received several responses to our direct probes with the prespecified
IP addresses modified from the original request, and timestamp values set to 0. Multiple consecutive
measurements of the same target revealed that the timestamp values were being inserted into the
index where the IP addresses were specified, thus appearing as an incrementing IP address.

Extra Stamps for 0’s. The option specification allows for up to four prespecified addresses
to be provided. Our timestamp ping tool initially specified four addresses, padding out the extra
prespecified indexes with 0’s if less than four addresses were desired. Surprisingly, these ‘0.0.0.0°
addresses frequently were returned with timestamps. We speculate that some routers (likely stamp-
ing in transit, as successive 0.0.0.0 timestamp values varied) treated 0.0.0.0 as a wild card address.
Regardless of the cause, the stamps for 0.0.0.0 IPs have not affected our use of the option.

3.3 Responses to Requests In Transit

A router may provide different timestamp behaviors when it stamps while forwarding a packet
destined somewhere else, rather than destined to itself. To investigate, we issued traceroutes to
a set of random iPlane destinations, and from those destinations, generated a target list from
the intermediary routers we discovered between our vantage point and the destination. We took
these 8,278 intermediary targets and requested timestamps for them within a probe sent to the
destination along whose traceroute we had seen the target.

In the responses we recovered, we found that 56.8% of routers provided 0 stamps, 23.9% provided
four stamps, 17.6% provided one stamp, and 1.6% stamped twice.

Most striking is the shrinking of routers willing to stamp twice. Upon further investigation, the
deltas between subsequent stamps where we saw two stamps were extremely high, which indicated
that a single router was not stamping twice and then forwarding, but instead, stamping once on
the forward and reverse path from the destination of the probe. When re-probing the same set of
targets directly, we found that almost all routers which stamped twice stamped either once, or zero
times when probed indirectly.

3.4 Timestamp Values

The requested value for a timestamp probe is milliseconds since midnight UTC [6]. We find that
most routers appear to attempt to provide this value, providing values within a few minutes of the
time determined by our local machines.

When requested for multiple timestamps within the same request, most routers will provide the
same value in each provided timestamp. However, we did on occasion (5.3% of stamps in a series
of measurements over the DisCarte [4] topology) see a timestamp value increment between stamps,
presumably an effect of the clock incrementing while the router was constructing a response packet.
These increments were almost always an increment of +1, although we did in negligible cases see
increments which were larger.

Many routers will also respond with a ‘non-standard’ timestamp: one in which the first bit is
flipped to 1 and the remaining values are something other than the time. We found, however, that
these non-standard timestamps were difficult to predict, and often came subsequent to a standard
timestamp provided by the same router. In a study of 16795 responsive targets, 479 ever provided

non-standard timestamps. However, of those 479, all of them provided at least some responses
including only standard timestamps. Because non-standard timestamps contain unknown values
and are only rarely a problem, we simply discard probes that return with non-standard timestamp
values.

4 Reverse traceroute

Traceroute is a tool that allows a sender to measure the forward path their packets take towards a
remote destination. Invented in the early 80s, it is likely the most well-known tool for diagnosing
problems with and measuring the Internet. However, communication across the network is not a
one-way endeavor: packets must travel from the sender to the destination, and from that destination
back to the sender. Since forward and reverse paths are often asymmetric, traceroute only reveals
half of the path involved.

Reverse traceroute [5] complements normal traceroute, by measuring the reverse path from a
remote, uncontrolled destination, back to a controlled source. Reverse traceroute incrementally
combines three types of measurement, issued from distributed vantage points (PlanetLab [8]), to
discover reverse hops from destination back to source. The first two techniques are record route
enabled probes and traceroutes; timestamps complete the suite of tools.

Figure 1: Validating a candidate reverse hop using a prespecified timestamp probe.

4.1 Timestamps within Reverse Traceroute

Timestamp measurements are used to essentially confirm a ‘guess’ hop along the reverse path. Using
recent traceroutes generated by iPlane [7], we generate a set of next hop candidates by aggregating
all IPs that we have observed adjacent to R; in any previous traceroute (regardless of destination).
The next step uses timestamps to decide which next hop candidate is the correct one. For a next
hop candidate Ry, we can send a packet (S — Rj|R1R2). If we receive timestamps for both Ry
and Ry, we conclude that the packet reached Rj, and on its return path crossed Ro, confirming
that Ry is the true next hop. With these measurements, Reverse traceroute takes advantage of the

fact that timestamp requests provide more complete visibility into the reverse path, unlike forward
traceroutes which are limited to the forward path, or Record Route probes which are limited to 9
total hops.

However, a working and successful implementation must take into consideration packet filters,
timestamp-unresponsive targets, and anomalous behaviors. Below, we describe four modifications
to the simple algorithm to limit false positives threatened by Linux hosts, to avoid forward path
packet filters, to infer reverse stamps when the candidate reverse hop is also on the forward path, and
to infer reverse stamps when the most recent hop does not provide timestamps, but the candidate
hop does.

4.2 Modifications to Base Technique
4.2.1 Overstamping

The Linux ‘overstamping’ bug (in which the machine provides timestamps in the next two open
indices if it matches the prespecified address for the first index, but regardless of the prespecified
address for the second index) poses a threat of false positives to this technique. Sending a probe to
Ry requesting stamps {R1,R2} when Rp overstamps would lead to the inaccurate conclusion that
Ry was on the return path from R;.

To account for this threat, we first send (R1|R;R2R2). We have never observed an overstamping
machine stamp more than twice, so if the second Ry request is stamped then it must be that R was
actually on the return path. However, many machines provide a maximum of one stamp. Thus, if
Ry is a well-behaving router, and only the first Ry is stamped but the second is not, distinguishing
whether or not Ry actually stamped remains difficult.

We employ two methods to distinguish whether or not Ry stamped in this situation. First, we
look at the stamp values. While intuitive at first glance, it is not effective to simply require that
the stamped values for Ry and Ry be unequal. First, we observed 5.4% of Linux overstampers
incrementing the timestamp between stamps, bringing a threat of false positives. In addition, in
a study of adjacent address pairs within the iPlane topology, we found equal stamps provided by
two well-synced neighbors in 6.3% of cases, which would lead to false negatives. Instead, we accept
that R; and Ry were stamped by separate routers if the stamps for Ry and Rs only if the increment
between R; and Ry is large (greater than 3) or if the timestamps decrement.

If the timestamp values leave the stamp unclear, we send a second probe, (R;|R;1X), where
X is a ‘dummy’ address known not to be on the path. If R; stamps into X’s timestamp slot, we
declare that R; is an overstamper. If R; does not, we know that the original stamp for Ry was
indeed valid.

4.2.2 Avoiding Forward Path Filters

Some networks filter ICMP Packets, and others may filter options-enabled packets. If a filter lies
on the reverse path between the destination and the source, options-enabled ICMP packets will
be unsuccessful at discovering reverse hops: the packets will be dropped between the destination
and source. However, if a filter lies on a forward path to the destination, but not on the path
from destination back to source, it is possible to ‘route around’ a forward path filter using spoofed
probes, and successfully traverse the filter-free reverse path.

Figure 2 demonstrates the efficacy of this technique over a small sample of 1000 random des-
tinations from 662 ASes, all of which were found responsive to timestamp probes in previous
experiments. We chose 10 spoofing PlanetLab nodes we found to receive (non-spoofed) timestamp

mmmm \With spoofing |-
C—1 Without spoofing

800
700
600
500
400
300
200
100

0

Total number of de_stinations from
which source receives responses

0O 5 10 15 20 25 30 35 40
PlanetLab source, ordered by # of responses

Figure 2: For 43 PlanetLab nodes that receive responses from fewer than 700 out of 1000 random
timestamping destinations when sending non-spoofed probes, the number of destinations from
which the node receives responses once we include spoofing. The graph shows the total number of
unique destinations, first when sending the ping directly, and then when using 10 spoofers. The
nodes are ordered by the total number of responding destinations. The PlanetLab sites not included
in the graph do not benefit from the technique: 103 do not experience significant filtering, and 63
were either not working properly or are completely stuck behind filters.

responses from the highest number of destinations, and 209 PlanetLab nodes from each up and run-
ning PlanetLab site, removing nodes from the same site as our spoofers. First, each non-spoofing
node sends a series of timestamp pings to each destination. Then, for each non-spoofing node, each
spoofing node sends 10 timestamp pings spoofed as the non-spoofing node, to each destination.

The graph shows responses for a subset of receivers: those which did not start out with high
response rates when probed directly (they wouldn’t benefit from spoofing because they already
receive a high number), and those for which we received no responses at all (either because the site
was not working, or the site was completely trapped behind a filter). For each of the 43 remaining
receivers, the total number of unique IPs which responded to probes. The top half of the bar
includes IPs which were only discovered through spoofed measurements - for many, a significant
percentage of the total, if not the entirety.

4.3 Inferring Forward and Reverse Path Stamps

One peculiarity of timestamp implementations is that, although a router may respond to a request
for its own IP address with exactly two stamps when probed directly, this is not the case for a
router which timestamps while forwarding the packet. As a result, if a response to (R1|Ra, R2) is
received with two stamps for the same IP address, we can infer that Ry was in fact a one-stamper

which stamped on both the forward and reverse paths.

4.4 Spoofing to Isolate Reverse Path

When checking if Ry is on the reverse path from R;, we normally ask for both R;’s and Ro’s
timestamp, to force Rs to only stamp on the reverse path. However, Table 1 reveals 16.6% of
routers in the iPlane topology responding to timestamp probes without providing stamps. Hence,
we cannot use this technique to always discover a stamping Ry on the reverse path.

In situations where R does not stamp, we find a vantage point V' which we can establish does
not have Ry on its path to R;. Then, V pings R; spoofed as S, asking for Rs’s timestamp (but
not Ry’s). If S receives a stamp for Rg, it proves that Ry is on the reverse path from Rj.

To test whether Ry is not on V’s path, we send a series of timestamp pings from V to Ry
requesting Ro’s timestamp. We repeat the measurement in order to ensure that the packet was not
dropped, or that Rs does not stamp inconsistently. We find that after 10 probes, the chance of Ro
stamping in the next two probes is less than 1%.

4.5 Summary

With Reverse traceroute, we demonstrated two important aspects of working with timestamp
probes. First, since timestamp probes can be stamped by a packet in-transit on either the for-
ward or reverse path, timestamp measurements can be used to gain insight into the reverse path
taken by packets from a remote host back to the source. Second, we showed that while certain
peculiarities due to different implementations or filters can be difficult when working with times-
tamps, oftentimes they can be resolved with simple workarounds. As a result, timestamps are a
practical technique for determine if a particular address lies in the path taken by a probe, even
along the reverse path from the destination.

5 Alias Resolution

The mapping of machine to IP address is not always one-to-one: a machine may have more than one
IP address. Routers, which serve as hubs for forwarding traffic in many directions, will necessarily
have many IP addresses.

Multiple TP addresses belonging to the same machine can create ambiguity with regard to
measurement. For example, when two traceroutes are examined, each listing the IP addresses
along a single path, one may want to determine whether or not the two paths intersect. This is
trivial when a router provides the same IP address to both traceroutes. However, a router may
respond with a different IP address to each traceroute, depending on the incoming interface taken
by each measurement. Without a way to tell whether or not the IP addresses belong to the same
router, it is impossible to tell whether or not the paths intersect. Issues of this sort frequently arise
when trying to generate complete topologies of individual networks or compare different paths
taken across the Internet.

This problem of recognizing when distinct IP addresses belong to the same machine is referred
to as alias resolution. While many methodologies have been developed for identifying alias rela-
tionships, thus far, no method has been developed which covers resolution of all potential alias
pairs. In this context, some have proposed that the future of comprehensive alias resolution will lie
in successful combination of techniques with different coverage [9].

This section describes a new technique for alias resolution using prespecified timestamp mea-
surements, which complements existing techniques. In the following subsections, we describe and

10

evaluate the technique, and then propose how timestamp based aliases fit in to the larger context
of alias resolution.

5.1 Applying Timestamps to Alias Resolution

Prespecified Timestamp requests have the uncommon feature of allowing multiple IP addresses to
be specifically targeted in a single packet. Our technique nests requests for pairs of IP addresses in a
single probe: for a candidate alias pair of IPs A and B, we send four types of requests: (A|ABAB),
(A|BABA), (B|[ABAB), and (B|BABA). Using timestamp probes in this manner allows us to
make two primary observations that lead to the resolution of alias pairs: that certain topological
relationships should be impossible between non-alias IP address pairs, and that alias pairs should
have a shared clock. Along with a few more limited indicators, these principles can be applied to
IP pairs providing two or more timestamps in their responses.

5.1.1 Timestamp Values as a Fingerprint

Literal timestamp values serve as a fingerprint for assessing alias candidacy, by allowing us to
identify when two IP addresses appear to share access to a common clock. If we receive multiple
timestamps for one of our probes, a single host providing timestamps should provide the same
timestamp value for each stamp.

Making use of this, we check the difference between timestamps for all responses to all probes
for each pair. However, we have observed rare cases where the timestamp values have some in-
crement between stamps, although the timestamps are provided by the same host (in response to
(A|AAAA)). Therefore, we allow some leeway. Instead of requiring perfectly matching timestamp
values, we say that if less than 90% of the responses have all timestamps equal, or we observe
decrements between stamps, we discard the pair.

5.1.2 Topological Constraints

Because a prespecified address will only be stamped after all previous addresses have been stamped,
the ordering of the timestamps recorded must be the ordering of machines the packet traverses.
Using the ordering suggested by combinations of stamps, we can infer constraints on the topological
relationship between pairs of IP addresses. We find two cases in which the relationship implies
impossible or unlikely conditions if the addresses belong to different machines, and allows us to
identify each IP with the same machine.

Loops. Packet forwarding is typically a stateless operation based solely on the destination of
the packet. A router, upon receiving a packet, will read the destination of the packet and forward
it out on the appropriate interface immediately. Thus, if two routers are configured to forward
packets for a certain destination to each other, they should continue forwarding the packet to each
other until its time-to-live value expires.

We observe two response patterns with timestamps that imply some sort of looped routing
configuration. But, unlike the scenario described previously, the packet obviously managed to
escape the loop and return to the destination. (It is possible that the packet escaped the loop
because the loop existed only temporarily, as the routers involved updated their routing tables.)
That the packet would have to escape such a loop leads us to conclude that the packet did not
travel back and forth between two routers, but was at one router and stamped multiple times for
multiple interfaces owned by the same router.

There are two separate scenarios in which we infer loops of this sort. The first occurs when
four stamps are received in response to any of our queries. Figure 3(a) illustrates the route taken

11

To: VP?

Forward
through B!
ﬁ/\ o

6,

To: VP?

— B :Om’i’il
— through Al
A , |El
R ~ // — @
~
S~< 4 VP @.]

(a) Configuration of two distinct routers providing con- (b) Configuration of two distinct routers providing con-
secutive stamps to the request (A|ABAB). secutive stamps to the requests (VP — A|AB) and
(VP — B|BA).

Figure 3: Two configurations implying routing loops. Assuming destination-based routing, loops
should be impossible (or temporary, existing only while the routers are in the process of updating
their forwarding tables). Consistently receiving responses that imply such configurations leads to
the conclusion that the IP pairs must be aliases.

between by a timestamp request (S — B|ABAB). Timestamp values for all four prespecified
addresses suggests that the packet passed from A, to B, to A, to B again, meaning that B is
configured to forward the return traffic en route to S through A, and A is configured to forward
the return traffic en route to S through B, resulting in an impossible loop.

The second scenario, demonstrated in Figure 3(b), is the combination of two-stamp responses to
(S — B|BA) and (S — A|AB) received from the same vantage point S. Receiving these responses
from the same source means either that B and A are aliases, or that B’s return traffic to S is routed
through A, and that A’s return traffic for S is routed through B. Because this second explanation
is once again a looped scenario, we conclude that A and B belong to one machine and are aliases.

Distance. Oftentimes, a single vantage point will receive timestamps for (A|AB) alone, but not
(B|BA). In this situation, we still are able to infer alias relationships by combining the constraint
that B lie on A’s reverse path back to the source with TTL values returned by packets sourced by
both A and B.

TTL values are usually initialized to one of several well-known values. By inspecting the TTL
value on a packet sent by a sender D from a recipient S, it is simple to generate an estimated reverse
path length by subtracting the returned TTL from the nearest initial value. For a candidate pair
A, B which provides a response to the query (A|AB) alone, but not (B|BA), we generate estimated
reverse path lengths for both A and B using TTLs returned by probes to each of them.

Assuming A and B are separate machines, we know from the returned timestamp probe that
B is on the return path from A. Thus, A’s reverse path length should be equal to B’s reverse path
length, plus some difference X representing the number of hops in between A and B along the
reverse path. Should A and B have the same reverse path length, then this X value is 0, meaning
there are no hops between A and B, and A and B must reside on the same router.

5.1.3 Non-Alias Pairs

We declare a pair to be a definite non-alias under two conditions. First, we declare a pair to be
non-aliases if the timestamp values do not appear to share a common clock. We decide that two
routers don’t share a common clock when the delta between their stamps within the same packet

12

TTL(A) - TTL(B) = 2 TTL(A) - TTL(B) = 1 TTL(A) - TTL(B) = 0

Figure 4: Because TTL values are initialized to a small number of standard values, we can estimate
the reverse path length to S from routers A and B. If we know that the reverse path from A
traverses B, B’s reverse path length to S must be shorter than A’s. If their reverse path lengths
are the same, A and B must reside on the same router.

is negative, or if it is larger than 1 more than 10% of the time. Second, we declare a pair to be
non-aliases if we receive a three-stamp response to one of our probes. Among all of our classified
router behaviors, no machines ever provide three stamps to a request.

5.2 Evaluation

To evaluate our technique, we generated a dataset of alias pairs using timestamp measurements.
We started with a set of traceroutes taken September 2, 2009 by iPlane [7]. After removing
addresses in private prefixes and blacklisted addresses, we had 328,297 distinct IP addresses. Of
these, 111,963 were responsive to timestamp requests. Using the TTLs from UDP pings to the
responsive addresses, we clustered the addresses into candidate alias pairs using the same technique
as described in [7]. After removing any address that over-stamped, removing singleton clusters,
and removing clusters in which all addresses provided 0 stamps, we were left with 11,833 non-
singleton clusters consisting of 1,848,385 candidate pairs. To each of these pairs we sent four
probes: (A|ABAB),(A|ABAB),(B|ABAB), and (B|BABA).

5.2.1 Discussion of Results

For each of the pairs we generated we sent our nested timestamp probes. 1,609,915 pairs responded,
436,627 with no stamps. 1,084,358 provided one stamp, but only 16,285 of those providing one
stamp provided a timestamp for a prespecified address different from the destination (A|B rather
than A|A).

Table 2 displays the categorization of addressable alias pairs: those with two or more stamps.
While relatively few candidate pairs from the initial set fall into the ‘addressable’ category, the vast
majority of our candidates are likely non-aliases - recall that they were only declared candidate
pairs due to their similar TTL values.

13

Fails Clock Test | Passes Clock Test

Four Stamps 37 16612

Three Stamps 20732 15

Two Stamps (Loop) 30 5782
Two Stamps (Distance) 5669 9762
Two Stamps (Other) 4022 27284

Table 2: Pair categorization with combined topological and timestamp value conditions. Bolded
text (blue cells) are aliases; Normal text (green cells), non-aliases; Italicized text (yellow cells),
unknown.

Four-Stamped | Two-Stamped (Loop) | Two-Stamped (Distance) | Combined

Overlap 8863 3392 4865 15852

True Positive 1547 240 932 2628
False Positive 258 14 150 417
Missed Pair 7058 3138 3783 12807

Table 3: Overlapping pairs with mrinfo dataset from same week.

When probed individually (ie. (A|AAAA)), targets providing two stamps are three times as
likely to appear as targets providing four stamps. However, routers providing four stamps provide
more confirmed alias pairs than routers providing only two. In order to confirm a pair which stamps
at most two times, multiple probes and measurements must be taken in consideration, while as
those with four stamps provide the strongest confirmation of an alias relationship with a single
probe and a single condition. Many aliases which provide two stamps may also be counted in the
bottom right cell, those which cannot be confirmed as aliases due to a lack of strong topological
constraint.

Also of interest is the relationship between the two conditions we apply for alias confirmation.
Among pairs which stamp three times, very few at all pass the shared clock test, further strengthen-
ing our belief that legitimate alias pairs will not provide three stamps. Among four stampers, and
those two stampers we can make a loop argument with, the majority pass the clock test. However,
among those two stampers for which we must rely on TTLs and a distance argument, the secondary
clock test removes a large subset of pairs. This loss of pairs reflects the relative weakness of the
distance argument - it relies on TTLs being consistently initialized and decremented, and probes
not encountering load balancing routers. However, bolstered by the shared clock check, we still
have reasonable accuracy, as demonstrated in the following section.

5.2.2 Evaluation

We evaluate the accuracy and coverage of our aliasing techniques against a ground-truth dataset
of multicast-enabled routers [10].

Testing Accuracy with mrinfo Dataset. One property of IPv4 multicast requires multicast-
enabled routers to provide a list of its interfaces, associated IP addresses, and neighbors in response
to an IGMP ASK_NEIGHBORS request. Using the mrinfo tool to make daily ASK_NEIGHBORS requests,
Pansiot et al. [10] mapped remnants of the Mbone multicast overlay network. As a result, they
provide daily output of their results covering over four years of measurement. The resulting datasets
are limited in several ways: they only include multicast-enabled routers, they are limited to routers
which are connected across Mbone to the vantage point used to initiate the requests, and they are

14

limited to networks which do not filter IGMP traffic. However, because their alias results come
from a direct request to the router, they have the exceptional quality of ground-truth accuracy,
and complete coverage on all interfaces for each router they address.

Using the results generated with mrinfo on September 12, 2009 (the same week our timestamp
probes were sent), we compare our timestamp-generated aliases results with the ground truth, when
available. The mrinfo dataset covers 2869 routers, discovering 123,636 alias pairs over 17,159 IP
addresses.

We consider the overlap of the two sets to be the set of pairs from either set which contain one
or both IPs in both sets. Table 3 provides a breakdown of the overlap, for each alias category as
well as for the combined alias results (the transitive closure of all timestamp-inferred alias pairs).
The breakdown of the overlap categories are the following:

e True Positive: pairs where both IPs are categorized as aliases with timestamp and by mrinfo.

e False Positive: pairs where timestamps categorized an alias, but mrinfo either saw the IPs on
separate routers, or didn’t reveal one of the IPs at all (because mrinfo discovers all interfaces
on each router it addresses, this implies that the second IP is on a different router).

e Missed Pair: mrinfo discovers the pair, and one or both IPs are seen in the timestamp results.

The largest subset is the ‘Missed Pair’ category. However, this subset is extremely broad: it
includes pairs involving IP addresses not discovered by iPlane’s traceroutes as well as pairs where
one interface is responsive to timestamp but another is not. Turning to the subsets where mrinfo
measurements were able to determine accuracy or inaccuracy, the results are 86.3% true positive.
Inspecting the different alias categories, the four stamped pairs are 85.7% true positive, the two-
stamped (loop) pairs are 94.5% true positive, and the two stamped (distance) pairs are 86.1% true
positive. Note that these are relatively small subsets, and only include multicast enabled routers,
limited to the subset that happened to appear within iPlane’s traceroutes. The two-stamped (loop)
set are particularly small.

In addition to evaluating the accuracy of our true positive alias pairs, we compared those pairs
that we had declared negative against the same dataset. We declare a negative pair when we
receive a response from a pair with exactly 3 stamps, or when we see deltas between timestamp
values that are frequently large or that decrement. Despite several thousand pairs in the overlap of
mrinfo with our negative pairs, we did not encounter even a single ‘false negative’ when compared
to mrinfo.

Testing Interface Coverage with mrinfo. To understand how completely timestamp mea-
surements address all pairs, we probed a set of known alias pairs and tested how well our timestamp
technique identified them. Taking the set of alias pairs discovered by [10] using the mrinfo tool on
December 29, 2009, we generated our (A|ABAB), (B|ABAB), (B|BABA), (A|[BABA) requests
and probed from 19 PlanetLab nodes known to have high response rates to timestamp probes.
The initial dataset included 9,653 IP addresses, joined in 56,288 alias pairs, covering 1,657 routers.
Of the initial 56,288 pairs, 13,454 did not respond to probes. 20,477 provided one or zero stamps
(useless to our technique). 18,775 provided four stamps, and 202 provided two stamps for both
(A|AB) and (B|BA) requests, leading to the two-stamped (loop) configuration. A further 3380
provided two stamps to either (A|AB) or (B|BA), but not both. However, only 1,718 passed our
‘same TTL’ test, demonstrating that TTLs can vary even for true aliases.

Of all responsive pairs providing two or more stamps, almost all fit our ‘shared clock’ criteria,
but for 13 which displayed a clock decrement between stamps. This left us with a final count of
20,695 alias pairs confirmed by timestamp, the transitive closure of which covered 22,900 pairs.

15

Overall, we confirmed pairs on 667 routers, or 40.3% of routers we addressed. For 9 routers, the
closure of all timestamp confirmed alias pairs was divided into two sets. For the rest, each router
corresponded to only one timestamp cluster.

Complementary Cumulative Fraction of Interfaces Discovered
vs. Proportion of Routers

1
0.9 \\\
0.8 1

0.7 H
0.6
0.5
0.4

0.3
02 y

0.1

Proportion of Interfaces

[Alias Interfaces Discovered ——— |

0 01 02 03 04 05 06 07 08 0.9 1
Proportion of Routers

Figure 5: Complementary cumulative distribution of interfaces covered by timestamp measurements
over the mrinfo dataset. For over half of routers, all interfaces were successfully paired to another
interface from the same router.

Figure 5 shows the proportion of interfaces included in the timestamp-generated alias clusters
for each corresponding router. All interfaces successfuly identified for over half of those routers
which were responsive to any timestamp.

5.3 Alias Resolution in Context

Many techniques exist to address the IP alias resolution problem, but none so far have developed to
scale across the entire Internet and all addresses. Mercator sends a UDP probe to a high numbered
port, generating an ICMP Port Unreachable error message [11]. In rare cases, the error message will
be sourced from an address different from the destination of the original UDP probe, revealing that
the two addresses reside on the same router. Ally sent a succession of probes pairwise to suspected
aliases and analyzed the IPID value in response packets received [12]. Recognizing that subsequent
IPID values are usually on a counter, Ally declares a pair of addresses aliases if subsequent probes
interleaved between the two addresses remain in the same range. Radargun [13] borrows Ally’s
IPID insight and improves on its technique to reduce measurements from O(n?) probes to O(n)
probes. Radargun does this by further noticing that the ‘velocity’ at which the IPID increments
is usually linear. By probing an address several times consecutively, Radargun can measure this
velocity and then compare it against the velocity of other addresses, thus probing each address a
constant number of times rather than probing all candidates pairwise.

16

No single technique will suffice to identify all aliases. Looking at existing techniques, Radargun
only addresses probe-responsive targets with linear IPIDs, and Mercator, while rarely used, only
works in limited circumstances. Thus, some researchers are looking towards effective combinations
of existing techniques to provide the type of large-scale alias datasets needed for Internet-scale
measurement [9]. As such, we believe that timestamps, while not superseding any individual
technique, will play a role in the future of large-scale alias resolution. In one study over a mrinfo
dataset, we found that 20% of ground-truth aliases that Radargun left ‘unknown’ were successfully
confirmed using timestamp measurements. Therefore, we have reason to believe that timestamps
will complement the existing techniques well within the context of large-scale alias resolution efforts.

6 Delay

. Many applications, such as IP geolocation [14], require accurate latency values to function prop-
erly. However, traditional efforts have relied on subtracting RTT's from successive traceroute probes,
which may be inaccurate due to routing assymetries.

In this section, we describe a technique using the timestamp values in milliseconds to measure
the latency of a single link. We demonstrate that despite clock skew and despite a lack of coor-
dination of the target hosts, timestamp probes can measure latency between uncontrolled routers
with relatively accurate results.

6.1 Measuring Delay with Timestamps

To measure the latency across a link between two routers A, B, we first issue a probe that crosses
the A, B link, and request timestamps from both A and B (D;|A, B)). Using these measurements,
we can calculate Aq,

Ay =TS1(B) —TS1(A) = latency + queue; + skew(A, B)

In order to isolate the actual link latency, we must first factor out any queuing delay at either
router. To do this, we simply issue repeat measurements over a period of time, and take the tenth
percentile of several Ay’s, taking the value for which we assume the queuing component (the only
variable component) is minimized. In practice, we take the value at the 10" percentile, in case of
anomalous responses.

To factor out skew, we issue a second probe which crosses the link in the reverse direction,
(D2|B, A). This resolves to:

Ag =T5S5(A) — TSe(B) = latency + queuey — skew(A, B)

Because the probe traverses the link in the opposite direction, the skew this time is opposite
what it was in the previous. Once again, we factor out queuing with repeated measurements.
Finally, to calculate the actual latency, we solve for the latency using both of our min A’s:
A1+ Ay (latency + skew(A, B)) 4 (latency — skew(A, B))

. _ 5 = latency

Note that identifying paths crossing routers A and B in both forward and reverse directions is
not an entirely straightforward task. To identify such a path, we issue traceroutes to routers in A
and B’s network from hundreds of vantage points, with the intent of discovering as many paths
that may cross A or B as possible. Identifying which traceroutes cross the same routers accurately

17

Cities TS Latency | OWAMP (Forward) | OWAMP (Reverse)
Atlanta - Chicago 9.5 9.82 9.67
Atlanta - Houston 11.5 11.73 11.79
Atlanta - Washington 6.5 6.78 6.83
Chicago - Kansas 5.0 5.12 5.35
Chicago - New York 13.0 13.25 13.61
Chicago - Washington 18.0 8.35 8.83
Houston - Kansas 6.5 6.98 6.95
Houston - Los Angeles 15.5 17.79 14.13
Kansas - Salt Lake City 12.5 13.28 11.21
Los Angeles - Salt Lake City 11.5 10.69 12.77
Los Angeles - Seattle 12.5 10.62 14.6
New York - Washington 2.0 2.77 2.52
Salt Lake City - Seattle 8.0 7.31 9.29

Table 4: Millisecond latency values for inter-PoP links in the Internet2 network, as estimated by our
prespecified timestamp technique, and as provided by OWAMP [15] measurements at the source.

requires successful alias resolution as well, as a single router may respond with a different IP address
for different traceroute paths. Furthermore, for every path that we discover, say a traceroute which
crosses A, B on the path to D, we in reality issue two probes. We issue the straightforward (D|A, B),
that captures A and B on the forward path to D as we have already observed. In addition, we guess
that the reverse probe from D may traverse the same path, and send a second probe (D|D, B, A)
to catch the reverse link if it is traversed.

6.2 Evaluation

As a trial run for our technique, we measured latencies across the Internet2 backbone. We discovered
paths crossing 13 inter-city links, after issuing traceroutes from 482 vantage points, only 121 of
which had paths that crossed one of the relevant links and which were able to successfully issue
timestamp probes without encountering persistent filters. Table 4 shows our calculated latency
values per link. In comparison, we provide latency values provided by OWAMP [15] measurements,
which issue one-way pings from one source to another and use synchronized timestamps to calculate
one-way latencies. In all cases, except the anomalous Chicago-Washington link, the measurements
provided by IP timestamps are visibly close to those provided by the OWAMP project. Excluding
the Chicago-Washington link, the average IP timestamp generated value was .46 ms off from the
average of the forward-reverse latencies provided by OWAMP. Including the Chicago-Washington
link, the offset was only 1.16 ms. These results show that IP timestamps issued from a remote can
provide results comparable to those provided by a specialized technique like OWAMP.

6.3 Next Steps

In this section, we demonstrated that IP timestamps can be used to measure link latency without
control of either host on the end of the link. We showed that by using multiple vantage points, we
could discover traceroute paths that crossed the link in both forward and reverse directions, and
that we could use these paths to issue measurements requesting timestamps from hosts on either
end of the link.

To apply this technique to more widespread use, practical efforts should attempt to duplicate our

18

techniques over backbone links of industrial networks. Some challenges for large-scale feasibility will
include the limited support for the timestamp option, and a lack of latency data for comparison
to validate that the technique is successful on more challenging links. Furthermore, persistent
congestion can threaten any technique which relies on probes measuring latency while other traffic
is present.

7 Conclusions

We have demonstrated three uses for the IP prespecified timestamp option, all of which solve real
measurement problems by exploiting unique characteristics of prespecified timestamps. We used
timestamps to discover hops on the reverse path from a destination back to the source, taking
advantage of the fact that routers can provide timestamps while the probe is in-transit on either
the forward or reverse path. We identified IP aliases by making use of the ability to query multiple
IP addresses with a single timestamp probe. We measured the latency of individual backbone links
by leveraging the literal timestamp values in milliseconds, provided by routers on either end of the
link.

Beyond these use cases, we have have discovered over 25% of active routers providing some
support for the IP prespecified timestamp option, making timestamp support prevalent enough for
some practical applications. To further future efforts with IP timestamps, we documented each of
a limited set of unique router implementations of the option.

Acknowledgements

I would like to thank Ethan Katz-Bassett, Arvind Krishnamurthy, Tom Anderson, Mary Pimenova,
Colin Scott, and Harsha Madhyastha for all of their contributions and support.

References

[1] “Tracer T.” http://www.youtube.com/watch?v=SXmv8quf xM.

[2] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “IP options are not an option,”
tech. rep., EECS Department, University of California, Berkeley, 2005.

[3] R. Sherwood and N. Spring, “Touring the Internet in a TCP sidecar,” in IMC, 2008.

[4] R. Sherwood, A. Bender, and N. Spring, “DisCarte: A disjunctive Internet cartographer,” in
SIGCOMM, 2008.

[5] E. Katz-Bassett, H. V. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van Wesep, A. Krish-
namurthy, and T. Anderson, “Reverse traceroute,” in NSDI, 2010.

[6] “RFC 791: Internet Protocol,” September 1981.

[7] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “iPlane: An information plane for distributed services,” in OSDI, 2006.

[8] “Planetlab.” http://www.planetlab.org.
[9] K. Keys, “Internet-scale IP alias resolution techniques,” in ACM SIGCOMM Computer Com-
munication Review (CCR), 2009.

19

[10] P. Mrindol, V. V. den Schrieck, B. Donnet, O. Bonaventure, and J.-J. Pansiot, “Quantifying
ASes multiconnectivity using multicast information,” in IMC; 2009.

[11] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map discovery.,” in INFOCOM,
2000.

[12] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies with Rocketfuel,” in
SIGCOMM, 2002.

[13] A. Bender, R. Sherwood, and N. Spring, “Fixing Ally’s growing pains with velocity modeling,”
in IMC, 2008.

[14] B. Wong, I. Stoyanov, and E. G. Sirer, “Octant: A comprehensive framework for the geolocal-
ization of Internet hosts,” in NSDI, 2007.

[15] “RFC 4656: A One-way Active Measurement Protocol (OWAMP),” September 2006.

20

