
The I/O Driven Server:
From SmartNICs to Data Movement Controllers

Justine Sherry
sherry@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Abstract
Many researchers are turning to SmartNIC offloads to improve

the performance of high-performance networked systems. In this
editorial, I discuss why SmartNICs are an especially powerful form
factor for improving I/O intensive applications, and how their po-
sition in the dataplane enables them to take on central role in
managing I/O. Rather than focusing on the benefits of individual
offloads, this paper aims to explore the position of SmartNICs in the
overall system integration of datacenter servers at the hardware
and software level. I argue that SmartNICs should be viewed as ‘data
movement controllers’ (NIC-DMCs) which are responsible for tasks
involved in moving data between network, CPU, accelerators, and
other endpoints: multiplexing/steering, interfacing between proto-
cols, and enforcing I/O policies. I then enumerate open questions in
how the hardware and software systems of the future will evolve
to accommodate a dedicated NIC-DMC which is independent of
the CPU complex.

1 Introduction
A large class of I/O-Driven applications are pushing the limits

of what traditional server architectures can support in terms of
throughput. These applications include network functions, key-
value stores, caches, web servers, and microservices, and all of
them combine a few key properties. First, they are driven by a high
rate of incoming data: each piece of data arriving off of the network
is implicitly a request for action by the server, and the arrival rate
of this data is very high – up to 400Gbps on modern NICs. Second,
they perform a relatively small amount of compute per byte of data.
Unlike, say, scientific simulations (where a small amount of data
can result in days of number crunching by one compute device),
each network-triggered task is expected to complete in milliseconds
or even microseconds (i.e. they have very low latency demands).

There is a growing sense that ‘smart’ NICs (or DPUs, or
IPUs [49]), which inject some amount of programmable process-
ing at the network interface card, are part of the solution to meet
these challenging performance demands. To this end, we have seen
a range of remarkable networked systems which use SmartNICs
to ‘offload’ I/O intensive processing such as TCP and transport
logic [6, 43], serialization [39], packet filtering [16, 51], network vir-
tualization [12], and application multiplexing [16, 18, 24, 42]. Many
of the papers published in this space show exciting throughput and
latency gains going well past what was previously thought possible
with the CPU-only approach.

It is tempting to read this literature and take away the lesson that
this is yet another chapter in the lengthy story of how hardware
acceleration can help improve application performance in a post-
Moore era. Many SmartNICs offer unconventional compute offerings

like PISA pipelines, FPGAs, or network processors (NPUs) and there
is some evidence that for many workloads, these types of processors
can outperform traditional processor cores in terms of throughput
per Watt or latency. While the benefits of accelerators to improve
efficiency are certainly part of the story of why SmartNICs are
beneficial, to stop at this observation is a mistake.

In reality, there is something quite important about the NIC
form-factor itself, not just the type of compute or acceleration that
it offers. The power of the SmartNIC is that it moves some com-
pute to the ‘front door’ of the server, where an independent platform
can now take over control of data movement of the server. Taken
to its logical conclusion, processor cores shift from being ‘central’
processing units – responsible for steering and orchestrating data
movement within the server – and instead are liberated to focus
only on application-specific operations.1

To understand what is happening, we can start by looking at
two classes of processing which occur when data arrives from
the network demanding to be processed. One class of activity is
the true data processing: this is the application-specific activity,
such as performing a key-value lookup in memory, executing a
middlebox pipeline, or executing an RPC. Undergirding the true
data processing, however, are data movement operations such as
multiplexing incoming requests across hardware and processes,
interfacing with protocols such as TCP and re-formatting data for
the wire (serialization), or implementing policies and enforcing
ACLs.

Historically, processor cores have been responsible for both data
processing and managing data movement. Today, we are seeing a
physical separation in the hardware to independently implement
data processors and a data movement controller. SmartNICs take
on the role of data movement controllers (DMCs), where processor
cores as well as other hardware like accelerators take on the role
of data processors. The goal of this document is to explore the new
challenges in system integration across both software and hard-
ware as SmartNICs (or DPUs) take over the role of data movement
controller. Rather than considering individual tasks that we might
‘accelerate’, the goal is to envision the big picture in how dedicated
data movement controllers will transform the architecture of future
datacenters.

In §2 I will present three categories of tasks that fall under con-
trolling data movement, and why I/O-intensive systems benefit
from allowing a programmable NIC to take them over. These cate-
gories are multiplexing and steering data (§2.1), interfacing with
the ‘outside world’ (§2.2), and enforcing I/O policies (2.3).

1Thanks to Derek Chiou for articulating this distinction!

Draft 2023-11-08



In the remainder of the paper, I will discuss systems level chal-
lenges towards realizing an integrated NIC-DMC. First and fore-
most, there remain important software systems questions about
control. Although moving DMC functionality into the NIC clearly
delineates responsibility at a hardware level for who manages data
movement operations, at a software level, the question of control
is entirely muddled. Which software layer should manage the func-
tionality on the NIC-DMC: should it be applications, the operating
system, or a hypervisor? I discuss models of software control in §3.

In §4, I discuss other systems-level challenges for designing a
NIC-DMC which cross-cut both hardware design and software sys-
tems engineering. Answering these questions will provide insights
not only into the design of systems (given the availability of richly
programmable NIC hardware) but also into the design of servers
integrated with programmable NICs (given the needs of the systems
that those in this community design and implement).

Before moving forward, it is worth noting that the observa-
tions outlined within seem to have been arrived at by many in the
research community simultaneously, with both academia and in-
dustry pushing on many insights as to how to develop a NIC-DMC
architecture. Indeed, in §3 we will see how the NIC-DMC vision
is in some ways shared between application developers and multi-
tenant datacenter operators, but in other ways is subtly different.
The goal of this document is simply to articulate the changes that
are happening, identify why they are needed, and forecast a bit how
future servers will like and the the challenges we will encounter as
we build them.2

2 Key DMC Operations
To understand the role of the SmartNIC in serving as a data

movement controller (DMC), we can first explore the three tasks
implemented by a DMC and the bottlenecks they introduce when
implemented on same CPU(s) responsible for data processing. These
tasks are:
• Multiplexing at both the software and hardware level (§2.1)
• Interfacing with the outside world (§2.2)
• Intermediation and policy enforcement (§2.3)

2.1 Multiplexing
A single network cable is a shared resource for every process

and thread running on the server. Steering traffic to the correct
data processor is hence the first and foremost responsibility for the
DMC. This both means steering traffic to the right processor (at the
hardware layer) as well as making data available to the right process
or thread (at the software layer). Traditional hardware and software
systems require the CPU to intermediate incoming data to steer it
to its final destination. Unfortunately, this extra ‘hop’ between NIC
and the true receiving data processor introduces unnecessary extra
latency and eats up compute cycles. Moving this multiplexing into
a NIC-DMC allows the NIC to send data to its final consumer in
the first place.

Multiplexing at the Software Layer: Multiplexing between
applications is traditionally performed by the kernel, with packets
for different sockets arriving interleaved from the network and
the kernel responsible for doling packets out to their respective

2This manuscript is an extension of my keynote at EuroP4 2022 [44]. With apologies
to Scott Shenker for stealing his catchphrase, ‘There is nothing new here.’

PC
Ie

Sw
itc
h C

PU
Figure 1: Although PCIe sup-
ports peer to peer operations,
data from theNIC is typically
routed through the CPU any-
way.

Cache Cache

C
PU

0 C
PU

1

N
IC

UPI

PC
Ie

Figure 2: The NIC can only
tansmit to its ‘root’ processor,
and not directly to the proces-
sor core destined to process
its data.

sockets. This approach has been widely lambasted for introducing
expensive packet copies and context switches as data moves from
kernel to application [36, 48].3

The adoption of kernel-bypass software designs effectively cut
out this hop, pushing the issue of per-application multiplexing to
the NIC. High-performance but otherwise ‘dumb’ NICs now support
SR-IOV [35] and multiqueuing, RSS (which load balances packets
across receive queues using a hash function), and/or FlowDirec-
tor [15] (which can use a basic match-action operation over the
packet header to determine which receive queue to write incom-
ing packets to). By using these technologies to directly route packets
to per-application receive queues, NICs took their first step towards
taking responsibility of a data movement controller away from CPUs.

Nonetheless, once packets are read into userspace from their
respective receive queue, they may experience yet another round
of multiplexing as packets are fanned out across worker threads.
This might include another round of random hashing, a load-based
algorithm such as join-shortest-queue, or an assignment based on
stateful affinity (e.g., mapping a request in a key-value store with
a sharded keyspace). Consequently, applications might employ a
dedicated ‘I/O thread’ to do this multiplexing – once again giving
us a latency hit and wasting CPU cycles. Pioneering work such as
FlexKVS [18] and RingLeader [24] (and many others) have shown
that pushing this additional multiplexing task into the NIC provides
worthwhile efficiency gains.

Multiplexing at the Hardware Layer: Unfortunately, even after
software has patched its multiplexing inefficiencies by pushing mul-
tiplexing to the NIC-DMC, server hardware reinforces unnecessary
multiplexing hops. These inefficiencies manifest in NUMA server
architecture, and also whenever accelerators are the final data pro-
cessors. The problem occurs because the root CPU hardware must
intermediate data movement between the NIC and the destination
CPU (which may be on a secondary NUMA node) or accelerator.

In Fig. 1, data arriving from the NIC is sent to to host memory
and the CPU must explicitly send requests to an accelerator. This
type of scenario might play out, for example, in an image classifica-
tion microservice, in which an image arrives over the network for
classification to be performed by a machine learning accelerator. In

3When there are multiple resident VMs, a second layer of DMC operations occurs in the
hypervisorwith similar overheads and an equivalentmovement to avoid them by giving
VMs direct access to network devices, which may be virtualized in hardware [35].

Draft 2023-11-08



Fig. 2, data arriving from the NIC is copied into host memory at-
tached to its PCIe ‘root’ CPU – but the core destined to consume the
data is on another NUMA node. Hence, the data requires an addi-
tional ‘hop’ over QPI/UPI to reach the receiving processor; although
no processor cycles are wasted by this procedure it nonetheless
increases latency and leads to throughput loss. This overhead is is
observable in any multicore application attempting to naïvely scale
out across multiple NUMA nodes. 4

We can see today’s SmartNICs take on these hardware multiplex-
ing challenges in several exciting designs in the literature today.
NVIDIA’s GPUDirect [33] allows a NIC to read/write directly to
GPU memory, e.g. facilitating the classification example described
above. In the research literature, IO-TCP [21] enables direct disk
access by the NIC, accelerating services such as file transfer appli-
cations or video streaming which transfer files to clients over the
Internet. And, addressing the NUMA challenge illustrated in Fig-
ure 2, IOctopus [45] connects a single NIC-DMC to multiple PCIe
interfaces, allowing a single NIC to communicate point-to-point
with multiple NUMA roots.

Lessons for a NIC-DMC: By taking on multiplexing at both the
software and hardware layer, a NIC-DMC can send traffic from the
network directly to its receiving data processor, without any inter-
mediary steering or switching performed by the CPU. Multiplexing
on the NIC-DMC can hence reduce latency (by avoiding extra hops)
and leave more CPU cycles for application layer processing.

2.2 Interfacing
Another core task in any data movement procedure is interfacing

between the sending and receiving platforms. Data is constantly
packaged and re-packaged, marshalled and de-marshalled, from
data structures into wire formats, into TCP packets and Ethernet
frames, etc.. Traditionally, the CPU is required to spend cycle time
performing this re-packaging as it intermediates transfers of data
between applications, accelerators, disk, the network, etc. When
the NIC takes on a role as a data movement controller, it must take
on these tasks for correctness of multiplexing, but also may benefit
from doing so for performance reasons.

Interfacing for Accelerators: When a DMC-NIC takes on the
responsibility of steering traffic directly to/from accelerators, it also
must take on the role of re-formatting data betweenwire formats for
the network and the format expected by accelerators. Accelerators
have their own host of data formats: they may consume or produce
32-bit or 64 bit words; they may consume streams of data, or fixed
sized vectors; etc.

It is an unreasonable design choice to expect every accelerator to
support the complex protocols that are used over external networks.
Implementing, e.g., TCP support, adds significant complexity to any
hardware design and it would be inefficient to add such support to
each and every device attached to a server when we might instead
do so centrally at one location – namely, the DMC.

To the extent that sort of translation is supported today in prac-
tice, it is used with RDMA or RDMA-like protocols in which both

4For this reason, many high-performance applications will exclusively use cores on
the primary/root NUMA node – effectively leaving 1/2 of the potential capacity on
the table.

the client and the server have been specially configured for ex-
change; technologies like NVIDIA’s GPUDirect [33] take this ap-
proach. For Internet-facing or more general purpose applications,
more research will be needed to design NIC-DMCs which are capa-
ble of interfacing between accelerators and the network. IOTCP –
referenced above for enabling direct transfer of data from disk to
network – is a very nice model in which a NIC-DMC intermediates
communication between a disk (operating on a block abstraction)
and the network (operating on an HTTP/TCP abstraction).

Interfacing for Applications: When the DMC performs mul-
tiplexing for accelerators, it must perform interfacing for the ac-
celerators to do their work correctly. It is also the case that the
DMC must implement some higher-layer protocols to do its own
job correctly.

Consider a multicore key-value store in which data has been
sharded with ranges of data assigned to each core in order to avoid
contention and race conditions. When the DMC decides to which
processor core’s queue an incoming GET request belongs, it must
inspect up the network stack into the application layer to identify
the object ID being requested. If a request for an object comes over
a TCP connection, this means that the DMC must parse the TCP
packet, perform flow reassembly, and then parse the key-value
store’s Layer 7 messaging protocol, all to finally identify the object
being requested and to steer the incoming request to the core with
ownership of that object.

Hence, in order to correctly perform application-layer multiplex-
ing, the DMC must be aware of TCP and the Layer 7 protocol for
the key-value sture. Since this functionality is already implemented
at the DMC, it makes little sense to re-do this work again at the
receiving data processor.

Interfacing for Performance Gains: While the above two argu-
ments focus on the need to implement interfacing functionality for
correctness once the NIC has taken on multiplexing, there is also a
performance argument for doing so! Many refer to interfacing tasks
as part of a broader ‘datacenter tax’ [46] and argue that these oper-
ations should be offloaded from the CPU to improve performance
and efficiency; such offloads include checksum verification, segmen-
tation offloads [47], full TCP offloads [6, 43], TLS processing [34],
serialization offloads [39], or network virtualization [12].

It is worth taking a pause to understand why it might be a good
idea, from a performance perspective, to push this functionality into
the NIC.Why should simply taking a task andmoving it somewhere
else improve performance?

One reason is that SmartNICs often offer unconventional hard-
ware to implement these features, such as network processing units
(NPUs) [30, 32], PISA pipelines [5, 25], FPGAs [14, 26], or network-
specific accelerators [28]. Sometimes, but not always, these plat-
forms can perform the same computation as a traditional von Neu-
mann CPU with lower latency, lower jitter, or higher throughput
per Watt of energy. Understanding when and how alternative com-
putation platforms ‘beat’ traditional processors remains an active
area of research.

Another reason – especially in multitenant datacenters – that
moving this interfacing functionality to the NIC might be useful,
for its own sake, is that it preserves the primary CPU cores for
other uses, namely tenant compute. If the maximum core-count

Draft 2023-11-08



for a CPU in a datacenter is 24 cores, the operator can sell at most
23-core VMs to their tenants, if they require a dedicated core to
implement, e.g., interfacing for virtual networking. By moving this
compute to a separate platform entirely, the maximum marketable
VM size is now 24 cores [12].

Lessons for a NIC-DMC: To correctly support multiplexing in
a NIC-DMC, the NIC must be capable of taking on interfacing
tasks such as Ethernet, IP, TCP, and even serialization support. In
addition, there may often be performance and efficiency gains to
pushing functionality into a NIC-DMC as unconventional hardware
such as NPUs, PISA pipelines, and FPGAs can often implement such
tasks at higher throughputs and lower latencies with less energy
cost.

2.3 Policy Intermediation
A third category of functionality that the DMC is tasked with

is policy intermediation such as firewalling, implementing QoS or
rate limiting, or virtualizing network addressing. These tasks are
implemented by a privileged system component which enforces
that this functionality is applied over every application and service.
Historically, these features were co-resident with the multiplexing
and interfacing functionality embedded in the kernel or hypervisor.

Today, many major datacenters have offloaded many of their hy-
pervisor policies to ‘smart’ hardware, e.g., Microsoft’s Accelnet [12],
AWS Nitro [4], VMware’s Project Monterey [10], and Alibaba’s Fi-
das [9]. Hence, this policy intermediation category is (arguably) the
most successful of the three classes of DMC functionality moving
onto SmartNIC hardware.

Physical Rather than Virtual Isolation: Unlike many DMC in-
terfacing tasks like TCP support which can be implemented in user-
space, these operations are fundamentally privileged – one cannot,
e.g. expect an unruly application developer to enforce rate limiting
upon themselves. Guaranteeing that an administrator-set rate limit-
ing policy is enforced correctly requires an administrator-privileged
execution environment. Hence, implementing these features on a
traditional processor requires context switching, which eats cycles
and hurts latency. On the other hand, implementing these features
on a physically separate device uses physical isolation to enforce
the policy, without this overhead.

Intermediation for Accelerators: Most accelerators lack any
sort of protected or privileged mode and hence an external DMC
– CPU or NIC – must do this work for them. If we have moved
mulitplexing to the NIC, then we must move these operations as
well.

Performance Gains: As with interfacing tasks above, the same
arguments about the benefits of unconventional hardware apply to
offloading these tasks from CPU to NIC for performance reasons.

Lessons for a NIC-DMC: NIC-DMCs can provide physical, rather
than virtual, isolation to enforce policies over network I/O, avoiding
the cost of context switching on the data processor. NIC hardware
may also be able to improve performance efficiency of these op-
erations by performing policy functionality like firewalling, rate
limiting, etc. in unconventional hardware.

3 Managing a NIC-DMC
In the previous section, we outlined three categories of data

movement functionality that are moving out of ‘Central Processing
Units’ and into dedicated ‘DataMovement Controllers’ embedded in
SmartNICs: (1) multiplexing/steering, (2) interfacing, and (3) policy
enforcement. Many academic prototypes focus on a particular task
in just one of these categories – e.g., implementing firewalling [17],
or application-specifici steering [24]. However, the overall trajec-
tory is towards an integrated DMC which performs all three classes
of functionality, fully freeing processor cores from orchestrating
data movement altogether.

However, how this integration will occur remains hazy. A key
question for both software systems developers and hardware devel-
opers iswho will manage the DMC (we will discuss other integration
challenges in §4). The problem is that multiplexing, interfacing, and
policy enforcement in the traditional model happen at three levels
of privilege: that of the application, the operating system, or the
hypervisor. Today, different subcommunities in academia and in-
dustry are making very different assumptions about ‘who’ controls
the DMC.

There are good reasons that application developers, OS develop-
ers, and hypervisor developers all want a stake in what happens
on the DMC. Applications perform multiplexing when they fan
out, e.g. incoming HTTP requests across threads, and they per-
form interfacing when implementing L7-ish protocols like QUIC
or TLS. OS kernels perform multiplexing when they steer TCP and
UDP data to the appropriate application layer socket; they perform
interfacing when they implement protocols like TCP, UDP, and Eth-
ernet; they perform policy enforcement with tools like netfilter
in Linux. And finally, hypervisors perform multiplexing when they
steer incoming packets to the correct virtual machine, interfacing
when they implement virtual networking, and they perform policy
enforcement when they enforce rate limits or firewalling.

So who will be programming the NIC-DMC in the future?

There are a few competing visions today, each of which picks
either the application, the OS, or the hypervisor as the logical owner
of the NIC-DMC.

The Hypervisor as Owner: The most sophisticated artifacts
towards an integrated NIC-DMC are being pushed by cloud opera-
tors through systems like Microsoft’s Project Boost [7], VMware’s
Project Monterey [10], and Amazon’s AWS Nitro [4]. These systems
perform VM multiplexing on a NIC-DMC, interfacing for virtual
networking, and policy enforcement such as firewalling and rate
limiting. Increasingly they are also implementing interfacing for
other forms of I/O, such as network attached storage [10]. Indeed,
Microsoft, VMWare, and Amazon have all either declared success
or an intent to move all hypervisor functionality off of processor
cores and onto a NIC-DMC, enabling them to sell ‘virtual’ machines
which are extremely close to the bare metal as the processor cores
no longer need to be shared by the hypervisor and guest operating
system.

The Application as Owner: At another extreme, many NIC-DMC
deployments are entirely application-driven. These deployments
tend to be used in environments where (a) servers are dedicated to a
particular application, (b) this application demands high throughput

Draft 2023-11-08



and low latency I/O, and (c) there is a single administrator such that
it is considered secure to bypass the operating system (e.g. using
DPDK) and forgo using a hypervisor altogether. Pigasus is an aca-
demic Intrusion Detection Systems (IDS) in which the application
assumes complete control of the NIC-DMC, programming it both
with DMC functionality (Ethernet and TCP interfacing, multicore
load-balanacing) as well as some IDS-specific functionality [51].
In industry, some of the most high-performance and tightly in-
tegrated application-controlled deployments are found in trading
firms. For example, Jane Street uses SmartNICs to For example, Jane
Street uses SmartNICs to implement filtering and flow steering of
high-bandwidth marketdata feeds [1].

The Operating System as Owner: A third path – with signifi-
cantly less deployment traction than the hypervisor-controlled or
application-controlled models – is that the operating system might
take control of the functionality on the NIC-DMC. An argument
in favor of this approach comes from my student Hugo Sadok in
his work on Kernel On-Path Interposition (KOPI) [40]. Hugo ob-
serves that the operating system traditionally does a tremendous
amount of DMC work, from multiplexing incoming TCP data be-
tween sockets; implementing protocol support for Ethernet, TCP, IP,
etc; to enforcing administrative policies via tools like iptables and
qdisc. Today, many high performance applications have adopted
kernel-bypass designs to achieve high throughput and low latency,
but in the process, given up the benefits of all of this traditional
kernel functionality. Hugo argues that the only way to get this
functionality back, without sacrificing the performance benefits of
kernel-bypass, is to physically maintain the kernel-bypass architec-
ture (allowing the NIC to transfer data directly to userspace and
vice versa) while logically restoring the kernel into the datapath by
giving the kernel control over the functionality implemented on
the NIC-DMC.

While the KOPI approach brings a missing piece of the tradi-
tional data movement story (that of the operating system) back
into the picture for the future of SmartNICs, it also suffers the
same drawbacks as the application-controlled and the hypervisor-
controlled approaches. Specifically, each of these approaches pre-
clude the others: they hypervisor and OS approaches do not have
a ‘story’ for how to integrate application-layer offloads, and the
application-layer approach completely bypasses any priveleged
layer for enforcing policies from OS administrators or datacenter
operators.

A hybrid approach?: A natural idea is to provide some sort of
hybrid, multi-programmable approach: in which the NIC-DMC con-
tains ‘hooks’ for programming by applications, operating systems,
and hypervisors. Very nascent but exciting work exists to explore
this space [8, 19]. The complexity of enablingmultiple programmers
on the NIC-DMC varies depending on the programmable hardware
on the NIC. For example, NICs hosting traditional processor cores
might require protection rings to isolate instructions from each
programmer at different layers of privilege [41]. However, NICs
using spatial compute platforms like FPGAs (or CGRAs) might sup-
port tiling in which the physical space of the device is allocated to
different programmers [19].

Ultimately, the danger with a hybrid approach is that, in im-
plementing the isolation and multiplexing mechanisms to support
programming by applications, OSes, and hypervisors, we might
re-introduce many of the undesirable performance overheads we
seek to avoid in modern high-I/O systems. We may also dramati-
cally increase resource requirements (e.g., requiring more memory
to host per-application policies for dozens of co-resident applica-
tions). Perhaps the cost is too high, and an approach with a single,
privileged programmer sitting at the hypervisor will win out.

Why These Abstractions Matter: Ultimately, the question of
who will be programming the NIC-DMC is a question for software
systems thinkers, not hardware research. The needs we have at
the software layer should shape the future of the hardware designs
that NIC vendors offer. For example, if we want multiprogramming
support for the NIC-DMC, the hardware offerings may have to
change in order to enable isolation or process switching. NICs
designed with hypervisor use cases in mind may not support deep
packet inspection (since hypervisors rarely interact with packet
contents), where NICs designed with application developers needs
in mind might come with ‘hardened’ support for TCP reassembly
and a flexible DPI engine.

Today, hyperscalers like Microsoft, Google, and Amazon are
the largest consumers of SmartNICs/DPUs, and their hypervisor-
centric use cases drive the discussion about the future hardware
architecture of these devices. If the rest of the software system
community fails to articulate what functionality we want or need,
we may arrive at a future where available NIC-DMC hardware
is not able to support the use cases that our explosively creative
research and development community envisions today.

4 Future Challenges
The research community has identified a plethora of exciting use

cases for SmartNICs that fall under the categories of multiplexing,
interfacing, and policy management. Significant research remains
in how to implement those things well using the unconventional
hardware offered by these devices. However, the purpose of this
article has been to ‘up-level’ the conversation around SmartNICs
to focus on the shift in control as SmartNICs move to take on the
role of ‘data movement controller’ and relieve processor cores of
multiplexing, interfacing, and policy management altogether.

In the previous section, we spoke of one question that I think
is critical towards envisioning the future of the NIC-DMC: the
question of which priveleged entities will be allowed to program
and manage the DMC. However, there are many other important
challenges that arise as we start to think of the NIC-DMC as an
integrated controller rather than a simple offload platform. Hence,
before concluding I sketch some additional questions about the
future integration of DMCs into the hardware and software of I/O
intensive servers.

What is the right ensemble of compute on the NIC-DMC? To-
day’s SmartNICs offer a range of programmable hardware offerings
(e.g. FPGAs [37], PISA pipelines [5], network processor [30, 32], or
x86 cores [11]). They also offer task-specific accelerators, e.g. for
cryptography support or compression [31]. While at first glance,
this seems like a hardware question, it is also a software question as
what is needed depends on what the software demands of the platform.

Draft 2023-11-08



Networked systems researchers should not shy away from making
statements about what is needed based on their experiences build-
ing DPU-driven applications. PANIC [25], for example, provides a
nice example of networking researchers providing the insight that
multiple compute platforms will be needed on future SmartNICs
and that switching should hence be a core component of future
NIC offerings.

How should the server interconnect change to support a
NIC-DMC? PCIe implementations are fundamentally orchestrated
towards the idea that processor cores are a ‘central processing
unit’ coordinating data movement. Most network topologies have a
‘root’ with one processor designated as the root. The PCIe protocol
historically only had support for dedicated ‘peripherals’ to commu-
nicate with the ‘root’, and although modern versions of the protocol
support ‘peer to peer’ communication (e.g. between NIC and disk)
many devices simply do not support this feature [2]. Finally, PCIe
today is prone to congestion and known to have high latencies.
While there are alternative technologies such as CXL [3] (which is
based in PCIe anyway) and NVLink, they too inherit some of these
problems. There is an open field for the design of a new server inter-
connect, one which recognizes the shift of DMC operations away
from processor cores and on to a dedicated device. Once again, this
may at first glance seem like a hardware/architecture question, but
surely networking researchers have insights to offer in the design
of what is, afterall, another network.

What does the shift towards a DMCmean for security? Every
time systems researchers propose an exciting new thing, security
researchers come in, spoil our party, and tell us we have created a
massive vulnerability somehow.

Where are the ‘open’ platforms and code to support integra-
tion? Systems researchers benefit tremendously from building and
extending each other’s platforms, with a legacy from BSD [38] to
AFS [29] to Spark [50]. In networking, the Click software router [22]
catalyzed a huge advance in developing novel applications and
research prototypes. A few proposals exist in the literature – espe-
cially in the FPGA space where there are open-source systems like
Rosebud [20], ClickNP [23], Corundum [13], and Fluid [27] – but
we have yet to see massive traction and a community pushing new
features into a shared system.

5 Conclusion
The power of compute at the network interface card to improve

performance and efficiency is now a well-established success story.
Our next step as a community is to stop thinking of SmartNICs as
a platform for ‘offloads’, and instead to think of them as a platform
with a clearly defined role in the software and hardware architecture.
In this paper, I defined this role as a ‘data movement controller’, with
a clearly defined scope of responsibilities: multiplexing, interfacing,
and policy enforcement. Nonetheless, the shape of the role of future
DMCs remains open for discussion, and we as a community should
continue to articulate what we do and do not require from this
platform.

In defining the role of the NIC-DMC, we also set the stage for
operating systems, applications, and hypervisors to re-organize
themselves around the existence of this platform. Importantly, we in
the software systems communitymust articulate what functionality

we need from the DMC – as this in turn should drive the future
hardware architecture of these nascent devices.

Acknowledgements
Thanks to Hugo Sadok, Nirav Atre, Aurojit Panda, Boon Ang,

Brian Nigito, Ron Minsky, Ren Wang, Derek Chiou, and James Hoe
for the interesting discussions and useful feedback on this draft.
This work was supported by the Intel/VMware Crossroads 3D FPGA
Research Center, a VMware Systems Research Award, and a Google
Research Gift.

References
[1] 2023. Private communciation with Brian Nigito and Ron Minsky.
[2] 2023. Private communciation with Ren Wang.
[3] 2023. Compute Express Link. https://www.computeexpresslink.org/
[4] Amazon. 2023. AWS Nitro System. https://aws.amazon.com/ec2/nitro/
[5] AMD Corporation. [n. d.]. AMD Pensando SmartNIC. https://www.amd.com/

en/accelerators/pensando
[6] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,

David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In Proceedings of the 17th Usenix Conference on
Networked Systems Design and Implementation (Santa Clara, CA, USA) (NSDI’20).
USENIX Association, USA, 93–110.

[7] Microsoft Azure. 2023. Preview: Azure Boost. https://azure.microsoft.com/
en-us/updates/preview-azure-boost/

[8] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,
Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. 2020. hXDP: Efficient Software
Packet Processing on FPGA NICs. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 973–990.
https://www.usenix.org/conference/osdi20/presentation/brunella

[9] Jian Chen, Xiaoyu Zhang, TaoWang, Ying Zhang, Tao Chen, Jiajun Chen, Mingxu
Xie, and Qiang Liu. 2022. Fidas: Fortifying the Cloud via Comprehensive FPGA-
Based Offloading for Intrusion Detection: Industrial Product. In Proceedings of the
49th Annual International Symposium on Computer Architecture (New York, New
York) (ISCA ’22). Association for Computing Machinery, New York, NY, USA,
1029–1041. https://doi.org/10.1145/3470496.3533043

[10] Kit Colbert. 2020. Announcing Project Monterey: Redefining Hybrid Cloud
Architecture. VMware Blog.

[11] Kevin Deierling. 2020. What Is a DPU? NVIDIA Blog. https://blogs.nvidia.com/
blog/2020/05/20/whats-a-dpu-data-processing-unit/

[12] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation (Renton,
WA, USA) (NSDI’18). USENIX Association, USA, 51–64.

[13] Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. 2020. Corun-
dum: AnOpen-Source 100-GbpsNic. In 28th IEEEAnnual International Symposium
on Field-Programmable Custom Computing Machines, FCCM 2020, Fayetteville, AR,
USA, May 3-6, 2020. IEEE, 38–46. https://doi.org/10.1109/FCCM48280.2020.00015

[14] Intel Corporation. [n. d.]. Infrastructure Processing Unit. https://www.intel.
com/content/www/us/en/products/details/network-io/ipu.htm

[15] Intel Corporation. 2023. Introduction to Intel Ethernet Flow Director and Mem-
cached Performance. Whitepaper 331109-001US.

[16] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, JR. Gerald Q. Maguire, and
Rebecca Steinert. 2021. Metron: High-Performance NFV Service Chaining Even
in the Presence of Blackboxes. ACM Trans. Comput. Syst. 38, 1–2, Article 3 (jul
2021), 45 pages. https://doi.org/10.1145/3465628

[17] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, JR. Gerald Q. Maguire, and
Rebecca Steinert. 2021. Metron: High-Performance NFV Service Chaining Even
in the Presence of Blackboxes. ACM Trans. Comput. Syst. 38, 1–2, Article 3 (jul
2021), 45 pages. https://doi.org/10.1145/3465628

[18] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High Performance Packet Processing with FlexNIC.
SIGARCH Comput. Archit. News 44, 2 (mar 2016), 67–81. https://doi.org/10.1145/
2980024.2872367

[19] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J. Rossbach. 2018. Sharing, Protection, and Compatibility for
Reconfigurable Fabric with AmorphOS. In 13th USENIX Symposium on Operating

Draft 2023-11-08

https://www.computeexpresslink.org/
https://aws.amazon.com/ec2/nitro/
https://www.amd.com/en/accelerators/pensando
https://www.amd.com/en/accelerators/pensando
https://azure.microsoft.com/en-us/updates/preview-azure-boost/
https://azure.microsoft.com/en-us/updates/preview-azure-boost/
https://www.usenix.org/conference/osdi20/presentation/brunella
https://doi.org/10.1145/3470496.3533043
https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-data-processing-unit/
https://blogs.nvidia.com/blog/2020/05/20/whats-a-dpu-data-processing-unit/
https://doi.org/10.1109/FCCM48280.2020.00015
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.htm
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.htm
https://doi.org/10.1145/3465628
https://doi.org/10.1145/3465628
https://doi.org/10.1145/2980024.2872367
https://doi.org/10.1145/2980024.2872367


Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad,
CA, 107–127. http://www.usenix.org/conference/osdi18/presentation/khawaja

[20] Moein Khazraee, Alex Forencich, George C. Papen, Alex C. Snoeren, and Aaron
Schulman. 2023. Rosebud: Making FPGA-Accelerated Middlebox Development
More Pleasant. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume 3
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 586–605. https://doi.org/10.1145/3582016.3582067

[21] Taehyun Kim, Deondre Martin Ng, Junzhi Gong, Youngjin Kwon, Minlan Yu,
and KyoungSoo Park. 2023. Rearchitecting the TCP Stack for I/O-Offloaded
Content Delivery. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). USENIX Association, Boston, MA, 275–292. https:
//www.usenix.org/conference/nsdi23/presentation/kim-taehyun

[22] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
2000. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3 (aug 2000),
263–297. https://doi.org/10.1145/354871.354874

[23] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. ClickNP: Highly Flexible
and High Performance Network Processing with Reconfigurable Hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/2934872.2934897

[24] Jiaxin Lin, Adney Cardoza, TarannumKhan, Yeonju Ro, Brent E. Stephens, Hassan
Wassel, and Aditya Akella. 2023. RingLeader: Efficiently Offloading Intra-Server
Orchestration to NICs. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 1293–1308.
https://www.usenix.org/conference/nsdi23/presentation/lin

[25] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella.
2020. PANIC: AHigh-Performance Programmable NIC forMulti-tenant Networks.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 243–259. https://www.usenix.org/conference/
osdi20/presentation/lin

[26] Mangoboost. 2023. Mangoboost DPU Accelerator. https://mangoboost.io/
[27] Joseph Melber. 2022. Fluid: Raising the Level of Abstraction for FPGA Accelerator

Development Without Compromising Performance. (6 2022). https://doi.org/10.
1184/R1/19787158.v1

[28] Mellanox Corporation. [n. d.]. Mellanox ConnectX-5. https://www.nvidia.com/
en-us/networking/ethernet/connectx-5/

[29] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H. Howard,
David S. Rosenthal, and F. Donelson Smith. 1986. Andrew: A Distributed Personal
Computing Environment. Commun. ACM 29, 3 (mar 1986), 184–201. https:
//doi.org/10.1145/5666.5671

[30] Netronome. [n. d.]. Netronome Agilio SmartNICs. https://www.netronome.com/
[31] NVIDIA. 2023. ConnectX SmartNICs. https://www.nvidia.com/en-

us/networking/ethernet-adapters/.
[32] NVIDIA Corporation. [n. d.]. Bluefield Data Processing Unit. https://www.

nvidia.com/en-us/networking/products/data-processing-unit/
[33] NVIDIA Corporation. 2023. NVIDIA GPUDirect. https://developer.nvidia.com/

gpudirect
[34] NVIDIA Corporation. 2023. TLS Offload using NVIDIA Bluefield DPU. https:

//docs.nvidia.com/doca/sdk/tls-offload/index.html
[35] Peripheral Component Interconnect Special Interest Group. 2015. Root Complex

Integrated Endpoints and IOV Updates. PCI-SIG Document 11110.
[36] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-

murthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The Operating
System is the Control Plane. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 1–
16. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/
peter

[37] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2015. A Reconfigurable
Fabric for Accelerating Large-Scale Datacenter Services. IEEE Micro 35, 3, 10–22.
https://doi.org/10.1109/MM.2015.42

[38] John S. Quarterman, Abraham Silberschatz, and James L. Peterson. 1985. 4.2BSD
and 4.3BSD as Examples of the UNIX System. ACM Comput. Surv. 17, 4 (dec
1985), 379–418. https://doi.org/10.1145/6041.6043

[39] Deepti Raghavan, Shreya Ravi, Gina Yuan, Pratiksha Thaker, Sanjari Srivas-
tava, Micah Murray, Pedro Penna Henrique, Amy Ousterhout, Philip Levis,
Matei Zaharia, and Irene Zheng. 2023. Cornflakes: Zero-Copy Serialization
for Microsecond-Scale Networking. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP).

[40] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S. Berger, James C.
Hoe, Aurojit Panda, and Justine Sherry. 2021. We Need Kernel Interposition over
the Network Dataplane. (May 2021).

[41] Michael D. Schroeder and Jerome H. Saltzer. 1972. A Hardware Architecture
for Implementing Protection Rings. Commun. ACM 15, 3 (mar 1972), 157–170.
https://doi.org/10.1145/361268.361275

[42] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krishna-
murthy. 2021. Xenic: SmartNIC-Accelerated Distributed Transactions. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual
Event, Germany) (SOSP ’21). Association for Computing Machinery, New York,
NY, USA, 740–755. https://doi.org/10.1145/3477132.3483555

[43] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.
FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX
Association, Renton, WA, 87–102. https://www.usenix.org/conference/nsdi22/
presentation/shashidhara

[44] Justine Sherry. [n. d.]. Re-envisioning Generic Server Architectures for I/O-
Driven Compute. Keynote at EuroP4 2022 Workshop. https://www.youtube.
com/watch?v=Lo0mVet4eZM

[45] Igor Smolyar, Alex Markuze, Boris Pismenny, Haggai Eran, Gerd Zellweger,
Austin Bolen, Liran Liss, Adam Morrison, and Dan Tsafrir. 2020. IOctopus: Out-
smarting Nonuniform DMA (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 101–115. https://doi.org/10.1145/3373376.3378509

[46] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding
Acceleration Opportunities for Data Center Overheads at Hyperscale. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 733–750.
https://doi.org/10.1145/3373376.3378450

[47] The Linux Kernel documentation. [n. d.]. Segmentation Offloads. https://docs.
kernel.org/networking/segmentation-offloads.html

[48] T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-Net: A User-Level
Network Interface for Parallel and Distributed Computing. SIGOPS Oper. Syst.
Rev. 29, 5 (dec 1995), 40–53. https://doi.org/10.1145/224057.224061

[49] Wikipedia. 2023. Data processing unit — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Data%20processing%20unit&
oldid=1164863994. [Online; accessed 04-August-2023].

[50] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory Cluster
Computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (San Jose, CA) (NSDI’12). USENIX Association, USA,
2.

[51] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James Hoe, Vyas Sekar, and Justine
Sherry. 2020. Achieving 100Gbps Intrusion Prevention on a Single Server. In
Proceedings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (OSDI ’20). USENIX Association, Berkeley, CA, USA.

Draft 2023-11-08

http://www.usenix.org/conference/osdi18/presentation/khawaja
https://doi.org/10.1145/3582016.3582067
https://www.usenix.org/conference/nsdi23/presentation/kim-taehyun
https://www.usenix.org/conference/nsdi23/presentation/kim-taehyun
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/2934872.2934897
https://www.usenix.org/conference/nsdi23/presentation/lin
https://www.usenix.org/conference/osdi20/presentation/lin
https://www.usenix.org/conference/osdi20/presentation/lin
https://mangoboost.io/
https://doi.org/10.1184/R1/19787158.v1
https://doi.org/10.1184/R1/19787158.v1
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://www.nvidia.com/en-us/networking/ethernet/connectx-5/
https://doi.org/10.1145/5666.5671
https://doi.org/10.1145/5666.5671
https://www.netronome.com/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://docs.nvidia.com/doca/sdk/tls-offload/index.html
https://docs.nvidia.com/doca/sdk/tls-offload/index.html
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://doi.org/10.1109/MM.2015.42
https://doi.org/10.1145/6041.6043
https://doi.org/10.1145/361268.361275
https://doi.org/10.1145/3477132.3483555
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://www.youtube.com/watch?v=Lo0mVet4eZM
https://www.youtube.com/watch?v=Lo0mVet4eZM
https://doi.org/10.1145/3373376.3378509
https://doi.org/10.1145/3373376.3378450
https://docs.kernel.org/networking/segmentation-offloads.html
https://docs.kernel.org/networking/segmentation-offloads.html
https://doi.org/10.1145/224057.224061
http://en.wikipedia.org/w/index.php?title=Data%20processing%20unit&oldid=1164863994
http://en.wikipedia.org/w/index.php?title=Data%20processing%20unit&oldid=1164863994

	Abstract
	1 Introduction
	2 Key DMC Operations
	2.1 Multiplexing
	2.2 Interfacing
	2.3 Policy Intermediation

	3 Managing a NIC-DMC
	4 Future Challenges
	5 Conclusion
	References

