
Rollback-Recovery for Middleboxes

Justine Sherry∗ Peter Xiang Gao∗ Soumya Basu∗ Aurojit Panda∗
Arvind Krishnamurthy• Christian Maciocco† Maziar Manesh† João Martins/

Sylvia Ratnasamy∗ Luigi Rizzo‡ Scott Shenker◦∗

∗ UC Berkeley • University of Washington † Intel Research / NEC Labs ‡ University of Pisa ◦ ICSI

ABSTRACT
Network middleboxes must offer high availability, with au-
tomatic failover when a device fails. Achieving high avail-
ability is challenging because failover must correctly restore
lost state (e.g., activity logs, port mappings) but must do so
quickly (e.g., in less than typical transport timeout values to
minimize disruption to applications) and with little overhead
to failure-free operation (e.g., additional per-packet laten-
cies of 10-100s of µs). No existing middlebox design pro-
vides failover that is correct, fast to recover, and imposes
little increased latency on failure-free operations.

We present a new design for fault-tolerance in middle-
boxes that achieves these three goals. Our system, FTMB
(for Fault-Tolerant MiddleBox), adopts the classical ap-
proach of “rollback recovery” in which a system uses in-
formation logged during normal operation to correctly re-
construct state after a failure. However, traditional rollback
recovery cannot maintain high throughput given the frequent
output rate of middleboxes. Hence, we design a novel solu-
tion to record middlebox state which relies on two mech-
anisms: (1) ‘ordered logging’, which provides lightweight
logging of the information needed after recovery, and (2) a
‘parallel release’ algorithm which, when coupled with or-
dered logging, ensures that recovery is always correct. We
implement ordered logging and parallel release in Click and
show that for our test applications our design adds only
30µs of latency to median per packet latencies. Our system
introduces moderate throughput overheads (5-30%) and can
reconstruct lost state in 40-275ms for practical systems.

CCS Concepts
• Networks → Middleboxes / network appliances; •
Computer systems organization→ Availability;

Keywords
middlebox reliability; parallel fault-tolerance
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787501

1. INTRODUCTION
Middleboxes play a crucial role in the modern Internet

infrastructure – they offer an easy way to deploy new dat-
aplane functions and are often as numerous as routers and
switches [35,59,62]. Yet, because middleboxes typically in-
volve proprietary monolithic software running on dedicated
hardware, they can be expensive to deploy and manage.

To rectify this situation, network operators are moving
towards Network Function Virtualization (NFV), in which
middlebox functionality is moved out of dedicated physical
boxes into virtual appliances that can be run on commodity
processors [32]. While the NFV vision solves the ded-
icated hardware problem, it presents some technical chal-
lenges of its own. Two of the most commonly cited chal-
lenges have been performance [38, 45, 52, 55, 58] and man-
agement [33, 35, 49] with multiple efforts in both industry
and academia now exploring these questions. We argue that
an equally important challenge – one that has received far
less attention – is that of fault-tolerance.

Today, the common approach to fault tolerance in middle-
boxes is a combination of careful engineering to avoid faults,
and deploying a backup appliance to rapidly restart when
faults occur. Unfortunately, neither of these approaches –
alone or in combination – are ideal, and the migration to
NFV will only exacerbate their problematic aspects.

With traditional middleboxes, each “box” is developed by
a single vendor and dedicated to a single application. This
allows vendors greater control in limiting the introduction of
faults by, for example, running on hardware designed and
tested for reliability (ECC, proper cooling, redundant power
supply, etc.). This approach will not apply to NFV, where
developers have little control over the environment in which
their applications run and vendor diversity in hardware and
applications will explode the test space. And while one
might contemplate (re)introducing constraints on NFV plat-
forms, doing so would be counter to NFV’s goal of greater
openness and agility in middlebox infrastructure.

The second part to how operators handle middlebox fail-
ure is also imperfect. With current middleboxes, operators
often maintain a dedicated per-appliance backup. This is
inefficient and offers only a weak form of recovery for the
many middlebox applications that are stateful – e.g., Net-
work Address Translators (NATs), WAN Optimizers, and In-
trusion Prevention Systems all maintain dynamic state about

http://dx.doi.org/10.1145/2785956.2787501

flows, users, and network conditions. With no mechanism
to recover state, the backup may be unable to correctly pro-
cess packets after failure, leading to service disruption. (We
discuss this further in §3.2 and quantify disruption in §6.)

Our goal in this paper is to design middleboxes that guar-
antee correct recovery from failures. This solution must
be low-latency (e.g., the additional per-packet latency under
failure-free conditions must be well under 1ms) and recov-
ery must be fast (e.g., in less than typical transport timeout
values). To the best of our knowledge, no existing middle-
box design satisfies these goals. In addition, we would prefer
a solution that is general (i.e., can be applied across applica-
tions rather than having to be designed on a case-by-case
basis for each individual middlebox) and passive (i.e., does
not require one dedicated backup per middlebox).

Our solution – FTMB– introduces new algorithms and
techniques that tailor the classic approach of rollback recov-
ery to the middlebox domain and achieves correct recovery
in a general and passive manner. Our prototype implemen-
tation introduces low additional latency on failure-free oper-
ation (adding only 30µs to median per-packet latencies, an
improvement of 2-3 orders of magnitude over existing fault
tolerance mechanisms) and achieves rapid recovery (recon-
structing lost state in between 40-275ms for practical system
configurations).

The remainder of this paper is organized as follows: we
discuss our assumptions and the challenges in building a
fault-tolerant middlebox in §2, followed by our goals and
an examination of the design space in §3. We present the de-
sign, implementation and evaluation of FTMB in §4, §5, and
§6 respectively. We discuss related work in §7 and conclude
with future directions in §8.

2. PROBLEM SPACE
We present our system and failure model (§2.1 and §2.2) and
the challenges in building fault-tolerant middleboxes (§2.3).

2.1 System Model
Parallel implementations: We assume middlebox applica-
tions are multi-threaded and run on a multicore CPU (Fig-
ure 1). The middlebox runs with a fixed number of threads.
We assume ‘multi-queue’ NICs that offer multiple transmit
and receive queues that are partitioned across threads. Each
thread reads from its own receive queue(s) and writes to its

R
S

S
ha

sh

shared state

IN thread out

IN thread out

IN thread out

IN thread out

ou
tp

ut
N

IC

Figure 1: Our model of a middlebox application

own transmit queue(s). The NIC partitions packets across
threads by hashing a packet’s flow identifier (i.e., 5-tuple in-
cluding source and destination port and address) to a queue;
hence all packets from a flow are processed by the same
thread and a packet is processed entirely by one thread. The
above are standard approaches to parallelizing traffic pro-
cessing in multicore systems [27, 37, 47, 58].
Shared state: By shared state we mean state that is accessed
across threads. In our parallelization approach, all packets
from a flow are processed by a single thread so per-flow state
is local to a single thread and is not shared state. How-
ever, other state may be relevant to multiple flows, and ac-
cesses to such state may incur cross-thread synchronization
overheads. Common forms of shared state include aggregate
counters, IDS state machines, rate limiters, packet caches for
WAN optimizers, etc.
Virtualization: Finally, we assume the middlebox code is
running in a virtualized mode. The virtualization need not
be a VM per se; we could use containers [5], lightweight
VMs [44], or some other form of compartmentalization that
provides isolation and supports low-overhead snapshots of
its content.

2.2 Failure Model
We focus on recovery from “fail-stop” (rather than Byzan-

tine) errors, where under failure ‘the component changes to
a state that permits other components to detect that a fail-
ure has occurred and then stops’ [57]. This is the standard
failure model assumed by virtual machine fault tolerance ap-
proaches like Remus [23], Colo [28], and vSphere [11].

Our current implementation targets failures at the virtu-
alization layer and below, down to the hardware.1 Our so-
lutions – and many of the systems we compare against –
thus cope with failures in the system hardware, drivers, or
host operating system. According to a recent study (see Fig-
ure 13 in [48]), hardware failures are quite common (80%
of firewall failures, 66% of IDS failures, 74% of Load Bal-
ancer failures, and 16% of VPN failures required some form
of hardware replacement), so this failure model is quite rel-
evant to operational systems.

2.3 Challenges
Middlebox applications exhibit three characteristics that,

in combination, make fault-tolerance a challenge: state-
fulness, very frequent non-determinism, and low packet-
processing latencies.

As mentioned earlier, many middlebox applications are
stateful and the loss of this state can degrade performance
and disrupt service. Thus, we want a failover mechanism
that correctly restores state such that future packets are pro-
cessed as if this state were never lost (we define correct-
ness rigorously in §3.1). One might think that this could
be achieved via ‘active:active’ operation, in which a ‘mas-
ter’ and a ‘replica’ execute on all inputs but only the mas-
1In §8, we discuss how emerging ‘container’ technologies would allow us
to extend our failure model to recover from failures in the guest OS. With
such extensions in place, the only errors that we would be unable to recover
from are those within the middlebox application software itself.

ter’s output is released to users. However, this approach
fails when system execution is non-deterministic, because
the master and replica might diverge in their internal state
and produce an incorrect recovery.2

Non-determinism is a common problem in parallel pro-
grams when threads ‘race’ to access shared state: the order
in which these accesses occur depends on hard-to-control
effects (such as the scheduling order of threads, their rate of
progress, etc.) and are thus hard to predict. Unfortunately,
as mentioned earlier, shared state is common in middlebox
applications, and shared state such as counters, caches or
address pools may be accessed on a per-packet or per-flow
basis leading to frequent nondeterminism.3 In addition, non-
determinism can also arise because of access to hardware
devices, including clocks and random number generators,
whose return values cannot be predicted. FTMB must cope
with all of these sources of nondeterminism.

As we elaborate on shortly, the common approach to ac-
commodating non-determinism is to intercept and/or record
the outcome of all potentially non-deterministic operations.
However, such interception slows down normal operation
and is thus at odds with the other two characteristics of
middlebox applications, namely very frequent accesses to
shared state and low packet processing latencies. Specif-
ically, a piece of shared state may be accessed 100k-1M
times per second (the rate of packet arrivals), and the latency
through the middlebox should be in 10-100s of microsec-
onds. Hence mechanisms for fault-tolerance must support
high access rates and introduce extra latencies of a similar
magnitude.

3. GOALS AND DESIGN RATIONALE
Building on the previous discussion, we now describe our

goals for FTMB (§3.1), some context (§3.2), and the ratio-
nale for the design approach we adopt (§3.3)

3.1 Goals
A fault-tolerant middlebox design must meet the three re-

quirements that follow.
(1) Correctness. The classic definition of correct recovery
comes from Strom and Yemeni [60]: “A system recovers
correctly if its internal state after a failure is consistent with
the observable behavior of the system before the failure."
It is important to note that reconstructed state need not be
identical to that before failure. Instead, it is sufficient that
the reconstructed state be one that could have generated the
interactions that the system has already had with the exter-
nal world. This definition leads to a necessary condition for
correctness called “output commit", which is stated as fol-
lows: no output can be released to the external world until
all the information necessary to recreate internal state con-
sistent with that output has been committed to stable storage.

As we discuss shortly, the nature of this necessary in-
formation varies widely across different designs for fault-
tolerance as does the manner in which the output commit
2Similarly, such non-determinism prevents replicated state machine tech-
niques from providing recovery in this context.
3We evaluate the effects of such non-determinism in §6.

property is enforced. In the context of middleboxes, the out-
put in question is a packet and hence to meet the output
commit property we must ensure that, before the middle-
box transmits a packet p, it has successfully logged to stable
storage all the information needed to recreate internal state
consistent with an execution that would have generated p.
(2) Low overhead on failure-free operation. We aim for
mechanisms that introduce no more than 10-100s of mi-
croseconds of added delay to packet latencies.
(3) Fast Recovery. Finally, recovery from failures must be
fast to prevent degradation in the end-to-end protocols and
applications. We aim for recovery times that avoid endpoint
protocols like TCP entering timeout or reset modes.

In addition, we seek solutions that obey the following two
supplemental requirements:
(4) Generality. We prefer an approach that does not require
complete rewriting of middlebox applications nor needs to
be tailored to each middlebox application. Instead, we pro-
pose a single recovery mechanism and assume access to the
source code. Our solution requires some annotations and
and automated modifications to this code. Thus, we dif-
fer from some recent work [50, 51] in not introducing an
entirely new programming model, but we cannot use com-
pletely untouched legacy code. Given that middlebox ven-
dors are moving their code from their current hardware to
NFV-friendly implementations, small code modifications of
the sort we require may be a reasonable middle ground.
(5) Passive Operation. We do not want to require dedicated
replicas for each middlebox application, so instead we seek
solutions that only need a passive replica that can be shared
across active master instances.

3.2 Existing Middleboxes
To our knowledge, no middlebox design in research or

deployment simultaneously meets the above goals.4

In research, Pico [50] was the first to address fault-
tolerance for middleboxes. Pico guarantees correct recovery
but does so at the cost of introducing non-trivial latency un-
der failure-free operation – adding on the order of 8-9ms of
delay per packet. We describe Pico and compare against it
experimentally in §6.

There is little public information about what commercial
middleboxes do and therefore we engaged in discussions
with two different middlebox vendors. From our discus-
sions, it seems that vendors do rely heavily on simply en-
gineering the boxes to not fail (which is also the only ap-
proach one can take without asking customers to purchase a
separate backup box). For example, one vendor uses only a
single line of network interface cards and dedicates an entire
engineering team to testing new NIC driver releases.

Both vendors confirmed that shared state commonly oc-
curs in their systems. One vendor estimated that with their
IDS implementation, a packet touches 10s of shared vari-
ables per packet, and that even their simplest devices incur
at least one shared variable access per packet.
4Traditional approaches to reliability for routers and switches do little to
address statefulness as there is no need to do so, and thus we do not discuss
such solutions here.

Somewhat to our surprise, both vendors strongly rejected
the idea of simply resetting all active connections after fail-
ure, citing concerns over the potential for user-visible dis-
ruption to applications (we evaluate cases of such disruption
in §6). Both vendors do attempt stateful recovery but their
mechanisms for this are ad-hoc and complex, and offer no
correctness guarantee. For example, one vendor partially ad-
dresses statefulness by checkpointing select data structures
to stable storage; since checkpoints may be both stale and
incomplete (i.e., not all state is checkpointed) they cannot
guarantee correct recovery. After recovery, if an incoming
packet is found to have no associated flow state, the packet
is dropped and the corresponding connection reset; they re-
ported using a variety of application-specific optimizations
to lower the likelihood of such resets. Another vendor of-
fers an ‘active:active’ deployment option but they do not ad-
dress non-determinism and offer no correctness guarantees;
to avoid resetting connections their IDS system ‘fails open’ –
i.e., flows that were active when the IDS failed bypass some
security inspections after failure.

Both vendors expressed great interest in general mecha-
nisms that guarantee correctness, saying this would both im-
prove the quality of their products and reduce the time their
developers spend reasoning through the possible outcomes
of new packets interacting with incorrectly restored state.

However, both vendors were emphatic that correctness
could not come at the cost of added latency under failure-free
operation and independently cited 1ms as an upper bound
on the latency overhead under failure-free operation.5 One
vendor related an incident where a trial product that added
1-2ms of delay per-packet triggered almost 100 alarms and
complaints within the hour of its deployment.

Finally, both vendors emphasized avoiding the need for
1:1 redundancy due to cost. One vendor estimated a price
of $250K for one of their higher-grade appliances; the au-
thors of [58] report that a large enterprise they surveyed
deployed 166 firewalls and over 600 middleboxes in total,
which would lead to multi million dollar overheads if the
dedicated backup approach were applied broadly.

3.3 Design Options
Our goal is to provide stateful recovery that is correct in

the face of nondeterminism, yet introduces low delay under
both failure-free and post-failure operation. While less ex-
plored in networking contexts, stateful recovery has been ex-
tensively explored in the general systems literature. It is thus
natural to ask what we might borrow from this literature. In
this section, we discuss this prior work in broad terms, fo-
cusing on general approaches rather than specific solutions,
and explain how these lead us to the approach we pursued
with FTMB. We discuss specific solutions and experimen-
tally compare against them in §6.

At the highest level approaches to stateful recovery can
be classified based on whether lost state is reconstructed by
replaying execution on past inputs. As the name suggests,
5This is also consistent with carrier requirements from the Broadband Fo-
rum which cite 1ms as the upper bound on forwarding delay (through BGN
appliances) for VoIP and other latency-sensitive traffic [14].

solutions based on ‘replay’ maintain a log of inputs to the
system and, in the event of a failure, they recreate lost state
by replaying the inputs from the log; in contrast, ‘no-replay’
solutions do not log inputs and never replay past execution.

As we will discuss in this section, we reject no-replay so-
lutions because they introduce high latencies on per-packet
forwarding – on the order of many milliseconds. However,
replay-based approaches have their own challenges in sus-
taining high throughput given the output frequency of mid-
dleboxes. FTMB follows the blueprint of rollback-recovery,
but introduces new algorithms for logging and output com-
mit that can sustain high throughput.

3.4 No-Replay Designs
No-replay approaches are based on the use of system

checkpoints: processes take periodic “snapshots” of the nec-
essary system state and, upon a failure, a replica loads the
most recent snapshot. However, just restoring state to the last
snapshot does not provide correct recovery since all execu-
tion beyond the last snapshot is lost – i.e., the output commit
property would be violated for all output generated after the
last snapshot. Hence, to enforce the output commit property,
such systems buffer all output for the duration between two
consecutive snapshots [23]. In our context, this means pack-
ets leaving the middlebox are buffered and not released to
the external world until a checkpoint of the system up to the
creation of the last buffered packet has been logged to stable
storage.

Checkpoint-based solutions are simple but delay outputs
even under failure-free operation; the extent of this delay
depends on the overhead of (and hence frequency between)
snapshots. Several efforts aim to improve the efficiency of
snapshots – e.g., by reducing their memory footprint [50],
or avoiding snapshots unless necessary for correctness [28].
Despite these optimizations, the latency overhead that these
systems add – in the order of many milliseconds – remains
problematically high for networking contexts. We thus reject
no-replay solutions.

3.5 Replay-Based Designs
In replay-based designs, the inputs to the system are

logged along with any additional information (called ‘de-
terminants’) needed for correct replay in the face of non-
determinism. On failure, the system simply replays execu-
tion from the log. To reduce replay time and storage re-
quirements these solutions also use periodic snapshots as an
optimization: on failure, replay begins from the last snap-
shot rather than from the beginning of time. Log-based re-
play systems can release output without waiting for the next
checkpoint so long as all the inputs and events on which that
output depends have been successfully logged to stable stor-
age. This reduces the latency sensitive impact on failure-
free operation making replay-based solutions better suited
for FTMB.

Replay-based approaches to system recovery should not
be confused with replay-based approaches to debugging.
The latter has been widely explored in recent work for de-
bugging multicore systems [16, 41, 61]. However, debug-

ging systems do not provide mechanisms for output commit,
the central property needed for correct recovery – they do
not need to, since their aim is not to resume operation af-
ter failure. Consequently, these systems cannot be used to
implement high availability. 6

Instead, the most relevant work to our goals comes
from the classic distributed systems literature from the 80s
and 90s, targeting rollback-recovery for multi-process dis-
tributed systems (see [31] for an excellent survey). Unfortu-
nately, because of our new context (a single multi-threaded
server, rather than independent processes over a shared net-
work) and performance constraints (output is released ev-
ery few microseconds or nanoseconds rather than seconds
or milliseconds), existing algorithms from this literature for
logging and output commit cannot sustain high throughput.

With all recovery approaches, the system must check
that all determinants – often recorded in the form of vector
clocks [42] or dependency trees [30] – needed for a given
message to be replayed have been logged before the mes-
sage may be released. This check enforces the output com-
mit property. In systems which follow an optimistic log-
ging approach, this output commit ‘check’ requires coor-
dination between all active process/threads every time out-
put is released. This coordination limits parallelism when
output needs to be released frequently. For example, in §5
we discuss a design we implemented following the opti-
mistic approach which could sustain a maximum throughput
of only 600Mbps (where many middleboxes process traf-
fic on the order of Gbps) due to frequent cross-core coor-
dination. Other systems, which follow a causal logging ap-
proach, achieve coordination-free output commit and better
parallelism, but do so by permitting heavy redundancy in
what they log: following the approach of one such causal
system [30], we estimated that the amount of logged deter-
minants would reach between 500Gbps-300Tbps just for a
10Gbps of packets processed on the dataplane. Under such
loads, the system would have to devote far more resources to
recording the logs themselves than processing traffic on the
dataplane, once again limiting throughput.

Hence, instead of following a standard approach, we in-
stead designed a new logging and output commit approach
called ordered logging with parallel release. In the follow-
ing section, we describe how our system works and why or-
dered logging with parallel release overcome the issues pre-
sented by previous approaches.

4. DESIGN
FTMB is a new solution for rollback recovery, tailored to

the middlebox problem domain through two new solutions:

1. ‘ordered logging’: an efficient mechanism for repre-
senting and logging the information required for cor-

6A second question is whether or not we can adopt logging and instrumen-
tation techniques from these systems to detect determinants. However, as
we discuss experimentally in §6, most debugging approaches rely on heavy-
weight instrumentation (e.g., using memory protection to intercept access
to shared data) and often logging data that is unnecessary for our use cases
(e.g., all calls to malloc) – this leads to unnecessarily high overheads.

Input
Logger
Stable

storage:
in/out

packets,
PALs,

snapshots
Output
Logger

Master Backup

Figure 2: Architecture for FTMB.

rect replay; ordered logging represents information in
such a way that it is easy to verify the output commit
property.

2. ‘parallel release’: an output commit algorithm that is
simple and efficient to implement on multicore ma-
chines.

The architecture of FTMB is shown in Figure 2. A master
VM runs the middlebox application(s), with two loggers that
record its input and output traffic. Periodic system snapshots
are sent from the master to stable storage, and used to start a
backup in case the master crashes. In our prototype, the mas-
ter and backup are two identical servers; the input and out-
put loggers are software switches upstream and downstream
from the master node; and the stable storage is volatile mem-
ory at the downstream switch – the storage is ‘stable’ in that
it will survive a failure at the master, even though it would
not survive failure of the switch it resides on. 7

As explained in earlier sections, the crux of ensuring cor-
rect recovery is enforcing the output commit property which,
for our context, can be stated as: do not release a packet un-
til all information needed to replay the packet’s transmission
has been logged to stable storage. Enforcing this property
entails answering the following questions:

• What information must we log to resolve potential
nondeterminism during replay? In the language of roll-
back recovery protocols this defines what the literature
calls determinants.

• How do we log this information efficiently? This spec-
ifies how we log determinants.

• What subset of the information that we log is a given
packet dependent on for replay? This defines an out-
put’s dependencies.

• How do we efficiently check when an individual
packet’s dependencies have been logged to stable stor-
age? This specifies how we check whether the output
commit requirements for an output have been met.

7There is some flexibility on the physical placement of the functions; our
system can withstand the failure of either the middlebox (Master/Backup)
or the node holding the saved state but not both simultaneously. We envis-
age the use of “bypass” NICs that fail open on detecting failure, to survive
failures at the loggers [4].

We now address each question in turn and present the archi-
tecture and implementation of the resultant system in §5.

4.1 Defining Determinants
Determinants are the information we must record in order

to correctly replay operations that are vulnerable to nonde-
terminism. As discussed previously, nondeterminism in our
system stems from two root causes: races between threads
accessing shared variables, and access to hardware whose
return values cannot be predicted, such as clocks and ran-
dom number generators. We discuss each of them below.
Shared State Variables. Shared variables introduce the
possibility of nondeterministic execution because we can-
not control the order in which threads access them.8 We
thus simply record the order in which shared variables are
accessed, and by whom.

Each shared variable vj is associated with its own lock
and counter. The lock protects accesses to the variable, and
the counter indicates the order of access. When a thread
processing packet pi accesses a shared variable vj , it cre-
ates a tuple called Packet Access Log (PAL) that contains
(pi, nij , vj , sij) where nij is the number of shared variables
accessed so far when processing pi, and sij is the number of
accesses received so far by vj .

As an example, figure 3 shows the PALs generated by the
four threads (horizontal lines) processing packets A, B, C, D.
For packet B, the thread first accesses variable X (which has
previously been accessed by the thread processing packet
A), and then variable Y (which has previously been accessed
by the thread processing packet C).

Note that PALs are created independently by each thread,
while holding the variable’s lock, and using information (the
counters) that is either private to the thread or protected by
the lock itself.

Shared pseudorandom number generators are treated in
the same way as shared variables, since their behavior is
deterministic based on the function’s seed (which is initial-
ized in the same way during a replay) and the access order
recorded in the PALs.
Clocks and other hardware. Special treatment is needed
for hardware resources whose return values cannot be pre-
dicted, such as gettimeofday() and /dev/random.
For these, we use the same PAL approach, but replacing the
variable name and access order with the hardware accessed
and the value returned. Producing these PALs does not re-
quire any additional locking because they only use informa-
tion local to the thread. Upon replay, the PALs allow us to
return the exact value as during the original access.

4.2 How to Log Determinants
The key requirement for logging is that PALs need to be

on stable storage (on the Output Logger) before we release
the packets that depend on them. While there are many op-
tions for doing so, we pursue a design that allows for fine-
grained and correct handling of dependencies.
8Recent research [22, 25] has explored ways to reduce the performance
impact of enforcing deterministic execution but their overheads remain im-
practically high for applications with frequent nondeterminism.

X

Y

Z

T

D
(D,1,Z,1)

C
(C,1,Z,2) (C,2,Y,1)

B
(B,1,X,2) (B,2,Y,2)

A
(A,1,X,1) (A,2,T,6)

time
in out

Figure 3: Four threads (black lines) process packets A,
B, C, D. As time goes (left to right), they access (cir-
cles) shared variables X, Y, Z, T generating the PALs in
parentheses. The red tree indicates the dependencies for
packet B.

We make two important design decisions for how logging
is implemented. The first is that PALs are decoupled from
their associated data packet and communicated separately
to the output logger. This is essential to avoid introduc-
ing unnecessary dependencies between packets. As an ex-
ample, packet B in the figure depends on PAL (A, 1, X, 1),
but it need not be delayed until the completion of packet A,
(which occurs much later) – it should only be delayed until
(A, 1, X, 1) has been logged.

The second decision has to do with when PALs are placed
in their outgoing PAL queue. We require that PALs be
placed in the output queue before releasing the lock asso-
ciated to the shared variable they refer to. This gives two
guarantees: i) when pi is queued, all of its PALs are already
queued; and ii) when a PAL for vj is queued, all previous
PALs for the same variable are already in the output queues
for this or other threads. We explain the significance of these
properties when we present the output commit algorithm in
§4.4.

4.3 Defining a Packet’s Dependencies
During the replay, the replica must evolve in the same

way as the master. For a shared variable vj accessed while
processing pi, this can happen only if i) the variable has
gone through the same sequence of accesses, and ii) the
thread has the same internal state. These conditions can
be expressed recursively in terms of the PALs: each PAL
(pi, n, vj ,m) in turn has up to two dependencies: one per-
packet (pi, n − 1, vk, sik), i.e., on its predecessor PAL for
pi, and one per-variable (pi′ , n

′, vj ,m− 1), i.e., on its pre-
decessor PAL for vj , generated by packet pi′ . A packet de-
pends on its last PAL, and from that we can generate the tree
of dependencies; as an example, the red path in the figure
represents the dependencies for packet B.

We should note that the recursive dependency is essen-
tial for correctness. If, for instance, packet B in the figure
were released without waiting for the PAL (D, 1, Z, 1), and
the thread generating that PAL crashed, during the replay
we could not adequately reconstruct the state of the shared
variables used while processing packet B.

54!

77

56! 55!

76!

61!63! 62!

77!

[56, 77, 63, 77]

Pkt A

52!

74

60!

53!

75!

57!59!

75!76!

[45, 76, 60, 70]

[53, 76, 57, 75]

Pkt B

10Gbps Ethernet

Master: Output PALs Output Logger

≥?
Largest PAL
sequence numbers
are stored in
dependency vector
VORi for packet

VORi compared
against PALs at
Output Logger

Figure 4: Parallel release. Each PAL is assigned a se-
quence number identifying when it was generated within
that thread; a packet is released from the output logger if
all PALs that were queued before it (on any thread) have
been logged.
4.4 Output Commit

We now develop an algorithm that ensures we do not re-
lease pi until all PALs corresponding to pi’s dependencies
have arrived at the output logger. This output commit deci-
sion is implemented at the output logger. The challenge in
this arises from the parallel nature of our system. Like the
master, our output logger is multi-threaded and each thread
has an independent queue. As a result, the PALs correspond-
ing to pi’s dependencies may be distributed across multi-
ple per-thread queues. We must thus be careful to minimize
cache misses and avoid the use of additional synchronization
operations.

Rejected Design: Fine-grained Tracking
The straightforward approach would be to explicitly track
individual packet and PAL arrivals at the output logger and
then release a packet pi after all of its PAL dependencies
have been logged. Our first attempt implemented a ‘score-
board’ algorithm that did exactly this at the output log-
ger. We used two matrices to record PAL arrivals: (i)
SEQ[i, j] which stores the sequence number of pi at vj and
(ii) PKT[j, k], the identifier of the packet that accessed vj at
sequence number sk. These data structures contain all the
information needed to check whether a packet can be re-
leased. We designed a lock-free multi-threaded algorithm
that provably released data packets immediately as their de-
pendencies arrived at the middlebox; however, the overhead
of cache contention in reading and updating the scoreboard
resulted in poor throughput. Given the two matrices de-
scribed above, we can expect O(nc) cache misses per packet
release, where n is the number of shared variables and c the
number of cores (we omit details due to space considera-
tions). Despite optimizations, we find that explicitly tracking
dependencies in the above fashion will result in the score-
board becoming the bottleneck for simple applications.

Parallel release of PALs
We now present a solution that is slightly more coarse-
grained, but is amenable to a parallel implementation with
very limited overhead. Our key observation here is that the

rules chosen to queue PALs and packets guarantee that both
the per-packet and per-variable dependencies for a given
packet are already queued for release on some thread before
the packet arrives at the output queue on its own thread. This
follows from the fact that the PAL for a given lock access is
always queued before the lock is released. Hence, we only
need to transfer PALs and packets to the output logger in
a way that preserves the ordering between PALs and data
packets.

This is achieved with a simple algorithm run between the
Master and the Output Logger, illustrated in Fig. 4. Each
thread on the Master maps ‘one to one’ to an ingress queue
on the Output Logger. PALs in each queue are transferred
as a sequential stream (similar to TCP), with each PAL asso-
ciated to an per-queue sequence number. This replaces the
second entry in the PAL, which then does not need to be
stored. Each thread at the Master keeps track of MAX, the
maximum sequence number that has been assigned to any
PAL it has generated.
On the Master: Before sending a data packet from its queue
to the output logger, each thread on the master reads the
current MAX value at all other threads and creates a vec-
tor clock VOR which is associated with the packet. It then
reliably transfers the pending PALs in its queue, followed by
the data packets and associated vector clocks.
On the Output Logger: Each thread continuously receives
PALs and data packets, requesting retransmissions in the
case of dropped PALs. When it receives a PAL, a thread
updates the value MAX representing the highest sequence
number such that it has received all PALs prior to MAX. On
receiving a data packet, each thread reads the value MAX
over all other threads, comparing each with the vector clock
VOR. Once all values MAXi ≥ VORi, the packet can be
released.

Performance
Our parallel release algorithm is efficient because i) threads
on the master and the output logger can run in parallel;
ii) there are no write-write conflicts on the access to other
queues, so memory performance does not suffer much; iii)
the check to release a packet requires a very small constant
time operation; iv) when batching is enabled, all packets re-
leased by the master in the same batch can use the same
vector clock, resulting in very small overhead on the link
between the master and the output logger and amortizing the
cost of the ‘check’ operation.

5. SYSTEM IMPLEMENTATION
We present key aspects of our implementation of FTMB.

For each, we highlight the performance implications of
adding FTMB to a regular middlebox through qualitative
discussion and approximate back-of-the-envelope estimates;
we present experimental results with our prototype in §6.

The logical components of the architecture are shown in
Figure 2. Packets flow from the Input Logger (IL), to the
Master (M), to the Output Logger (OL). FTMB also needs a
Stable Storage (SS) subsystem with enough capacity to store

the state of the entire VM, plus the packets and PALs accu-
mulated in the IL and OL between two snapshots. In our
implementation the IL, OL and SS are on the same physical
machine, which is expected to survive when M crashes.

To estimate the amount of storage needed we can assume
a snapshot interval in the 50–200 ms range (§6), and input
and output traffic limited by the link’s speed (10–40 Gbit/s).
We expect to cope with a large, but not overwhelming PAL
generation rate; e.g., in the order of 5 M PALs/s (assuming
an input rate of 1.25M packets/second and 5 shared state
accesses per packet).

5.1 Input Logger
The main role of the IL is to record input traffic since the

previous snapshot, so that packets can be presented in the
same order to the replica in case of a replay.

The input NIC on the IL can use standard mechanisms
(such as 5-tuple hashing on multiqueue NICs) to split traf-
fic onto multiple queues, and threads can run the IL tasks
independently on each queue. Specifically, on each input
queue, the IL receives incoming packets, assigns them se-
quence numbers, saves them into stable storage, and then
passes them reliably to the Master.
Performance implications: The IL is not especially CPU
intensive, and the bandwidth to communicate with the mas-
ter or the storage is practically equal to the input band-
width: the small overhead for reliably transferring packets
to the Master is easily offset by aggregating small frames
into MTU-sized segments.

It follows that the only effect of the IL on performance is
the additional (one way) latency for the extra hop the traffic
takes, which we can expect to be in the 5–10µs range [34].

5.2 Master
The master runs a version of the Middlebox code with the

following modifications:

• the input must read packets from the reliable stream
coming from the IL instead of individual packets com-
ing from a NIC;

• the output must transfer packets to the output queue
instead of a NIC.

• access to shared variables is protected by locks, and
includes calls to generate and queue PALs;

• access to special hardware functions (timers, etc.) also
generates PALs as above.

A shim layer takes care of the first two modifications; for a
middlebox written using Click, this is as simple as replacing
the FromDevice and ToDevice elements. We require
that developers annotate shared variables at the point of their
declaration. Given these annotations, we automate the inser-
tion of the code required to generate PALs using a custom
tool inspired by generic systems for data race detection [56].

Our tool uses LLVM’s [43] analysis framework (also used
in several static analysis tools including the Clang Static An-
alyzer [3] and KLEE [19]) to generate the call graph for the
middlebox. We use this call graph to record the set of locks

held while accessing each shared variable in the middlebox.
If all accesses to the shared variable are protected by a com-
mon lock, we know that there are no contended accesses to
the variable and we just insert code to record and update the
PAL. Otherwise we generate a “protecting” lock and insert
code that acquires the lock before any accesses, in addition
to the code for updating the PALs. Note that because the new
locks never wrap another lock (either another new lock or a
lock in the original source code), it is not possible for this
instrumentation to introduce deadlocks [17, 21]. Since we
rely on static analysis, our tool is conservative, i.e. it might
insert a protecting lock even when none is required.

FTMB is often compatible with lock-free optimiza-
tions. For example, we implemented FTMB to support
seqlocks [13], which are used in multi-reader/single-writer
contexts. seqlocks use a counter to track what ‘version’ of a
variable a reader accessed; this version number replaces sij
in the PAL.
Performance implications: the main effect of FTMB on
the performance of the Master is the cost of PAL generation,
which is normally negligible unless we are forced to intro-
duce additional locking in the middlebox.

5.3 Output Logger
The Output Logger cooperates with the Master to transfer

PALs and data packets and to enforce output commit. The
algorithm is described in §4.4. Each thread at M transports
packets with a unique header such that NIC hashing at OL
maintains the same affinity, enforcing a one-to-one mapping
between an eggress queue on M to an ingress queue on OL.

The traffic between M and OL includes data packets, plus
additional information for PALs and vector clocks. As a very
coarse estimate, even for a busy middlebox with a total of
5 M PALs and vector clocks per second, assuming 16 bytes
per PAL, 16 bytes per vector clock, the total bandwidth over-
head is about 10% of the link’s capacity for a 10 Gbit/s link.
Performance implications: once again the impact of
FTMB on the OL is more on latency than on throughput.
The minimum latency to inform the OL that PALs are in sta-
ble storage is the one-way latency for the communication.
On top of this, there is an additional latency component be-
cause our output commit check requires all queued PALs to
reach the OL before the OL releases a packet. In the worst
case a packet may find a full PAL queue when computing
its vector clock, and so its release may be delayed by the
amount of time required to transmit a full queue of PALs.
Fortunately, the PAL queue can be kept short e.g., 128 slots
each, without any adverse effect on the system (PALs can
be sent to the OL right away; the only reason to queue them
is to exploit batching). For 16-byte PALs, it takes less than
2µs of link time to drain one full queue, so the total latency
introduced by the OL and the output commit check is in the
10-30µs range.

5.4 Periodic snapshots
FTMB takes periodic snapshots of the state of the Mas-

ter, to be used as a starting point during replay, and avoid
unbounded growth of the replay time and input and output

logs size. Checkpointing algorithms normally freeze the VM
completely while taking a snapshot of its state.
Performance implications: The duration of the freeze,
hence the impact on latency, has a component proportional
to the number of memory pages modified between snap-
shots, and inversely proportional to bandwidth to the storage
server. This amounts to about 5µs for each 4 Kbyte page.
on a 10 Gbit/s link, and quickly dominates the fixed cost (1-
2ms) for taking the snapshot. However, a worst case analysis
is hard as values depend on the (wildly variable) number of
pages modified between snapshots. Hence it is more mean-
ingful to gauge the additional latency from the experimental
values in §6 and the literature in general [23].

5.5 Replay
Finally, we describe our implementation of replay, when

a Replica VM starts from the last available snapshot to take
over a failed Master. The Replica is started in “replay
mode”, meaning that the input is fed (by the IL) from the
saved trace, and threads use the PALs to drive nondetermin-
istic choices.

On input, the threads on the Replica start processing pack-
ets, discarding possible duplicates at the beginning of the
stream. When acquiring the lock that protects a shared vari-
able, the thread uses the recorded PALs to check whether it
can access the lock, or it has to block waiting for some other
thread that came earlier in the original execution. The infor-
mation in the PALs is also used to replay hardware related
non deterministic calls (clocks, etc.). Of course, PALs are
not generated during the replay.

On output, packets are passed to the OL, which discards
them if a previous instance had been already released, or
pass it out otherwise (e.g., copies of packets still in the Mas-
ter when it crashed, even though all of their dependencies
had made it to the OL). A thread exits replay mode when
it finds that there are no more PALs for a given shared vari-
able. When this happens, it starts behaving as the master, i.e.
generate PALs, compute output dependencies, etc.
Performance implications: other than having to re-run the
Middlebox since the last snapshot, operation speed in replay
mode is comparable to that in the original execution. §6.2
presents some experimental results. Of course, the duration
of service unavailability after a failure also depends on the
latency of the failure detector, whose discussion is beyond
the scope of this paper.

6. EVALUATION
We added FTMB support into 7 middlebox applications

implemented in Click: one configuration comes from in-
dustry, five are research prototypes, and one is a simple
‘blind forwarding’ configuration which performs no middle-
box processing; we list these examples in Table 1.

Our experimental setup is as follows. FTMB uses Xen
4.2 at the master middlebox with Click running in an Open-
SUSE VM, chosen for its support of fast VM snapshot-
ting [6]. We use the standard Xen bridged networking back-

Middlebox LOC SVs Elts Source
Mazu-NAT 5728 3 46 Mazu Networks [7]
WAN Opt. 5052 2 40 Aggarwal et al. [15]
BW Monitor 4623 251 41 Custom
SimpleNAT 4964 2 42 Custom
Adaptive LB 5058 1 42 Custom
QoS Priority 5462 3 56 Custom
BlindFwding 1914 0 24 Custom

Table 1: Click configurations used in our experiments,
including Lines of Code (LOC), Shared Variables (SVs),
number of Elements (Elts), and the author/origin of the
configuration.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000

C
D

F
of

 P
ac

ke
ts

Latency (us)

MazuNAT (Baseline)
with I/O Loggers

w/ FTMB w/o Snapshots
w/ FTMB + Snapshots

Figure 5: Local RTT with and without components of
FTMB enabled.

end; this backend is known to have low throughput and sub-
stantial recent work aims to improve throughput and latency
to virtual machines, e.g., through netmap+xennet [45, 52] or
dpdk+virtio [38, 55]. However, neither of these latter sys-
tems yet supports seamless VM migration. We thus built
two prototypes: one based on the Xen bridged networking
backend which runs at lower rates (100Mbps) but is com-
plete with support for fast VM snapshots and migration, and
a second prototype that uses netmap+xennet and scales to
high rates (10Gbps) but lacks snapshotting and replay. We
primarily report results from our complete prototype; results
for relevant experiments with the high speed prototype were
qualitatively similar.

We ran our tests on a local network of servers with 16-core
Intel Xeon EB-2650 processors at 2.6Ghz, 20MB cache size,
and 128GB memory divided across two NUMA nodes. For
all experiments shown, we used a standard enterprise trace
as our input packet stream [26]; results are representative of
tests we ran on other traces.

We first evaluate the FTMB’s latency and bandwidth over-
heads under failure-free operation (§6.1). We then evaluate
recovery from failure (§6.2).

6.1 Overhead on Failure-free Operation
How does FTMB impact packet latency under failure-
free operation? In Figure 5, we present the per-packet la-
tency through a middlebox over the local network. A packet
source sends traffic (over a logging switch) to a VM run-
ning a MazuNAT (a combination firewall-NAT released by
Mazu Networks [7]), which loops the traffic back to the
packet generator. We measure this RTT. To test FTMB, we
first show the base latency with (a) just the MazuNAT, (b)
the MazuNAT with I/O logging performed at the upstream/-
downstream switch, (c) the MazuNAT with logging, PAL-

 0
 1000
 2000
 3000
 4000
 5000
 6000

La
te

nc
y

(u
s)

Time

Figure 6: Testbed RTT over time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
D

F
of

 P
ac

ke
ts

Latency (us)
MazuNAT (Baseline)
MazuNAT, with FTMB and Snapshots
Pico (reported)
MazuNAT, under Colo
MazuNAT, under Remus

Figure 7: Local RTT with FTMB and other FT systems.

instrumented locks, parallel release for the output commit
condition and (d) running the MazuNAT with all our fault
tolerance mechanisms, including VM checkpointing every
200ms. Adding PAL instrumentation to the middlebox locks
in the MazuNAT has a negligible impact on latency, increas-
ing 30µs over the baseline at the median, leading to a 50th
percentile latency of 100µs.9 However, adding VM check-
pointing does increase latency, especially at the tail: the 95th
%-ile is 810µs, and the 99th %-ile s 18ms.

To understand the cause of this tail latency, we measured
latency against time using the Blind Forwarding configura-
tion. Figure 6 shows the results of this experiment: we see
that the latency spikes are periodic with the checkpoint in-
terval. Every time we take a VM snapshot, the virtual ma-
chine suspends temporarily, leading to a brief interval where
packets are buffered as they cannot be processed. As new
hardware-assisted virtualization techniques improve [1, 20]
we expect this penalty to decrease with time; we discuss
these opportunities further in §8.

How does the latency introduced by FTMB compare to
existing fault-tolerance solutions? In Figure 7, we com-
pare FTMB against three proposals from the research com-
munity: Pico [50], Colo [28], and Xen Remus [23]. Remus
and Colo are general no-replay solutions which can provide
fault tolerance for any VM-based system running a standard
operating system under x86. Remus operates by checkpoint-
ing and buffering output until the next checkpoint completes;
this results in a median latency increase for the MazuNAT
by over 50ms. for general applications Colo can offer much
lower latency overhead than Remus: Colo allows two copies
of a virtual machine to run side-by-side in “lock step”. If
their output remains the same, the two virtual machines are
considered identical; if the two outputs differ, the system
9In similar experiments with our netmap-based prototype we observe a me-
dian latency increase of 25µs and 40µs over the baseline at forwarding rates
of 1Gbps and 5Gbps respectively, both over 4 cores.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 100 1000

C
D

F

Time (us)

No PAL/Locks
1 PAL/Packet
5 PAL/Packet

Figure 8: Testbed RTT with increasing PALs/packet.

 0
 200
 400
 600
 800

 1000
 1200

DC: I
deal

LAN: Id
eal

WAN: Id
eal

LAN: O
bserved

WAN: O
bservedF

C
T

 (
m

ill
is

e
co

n
d
s)

No delay
1ms delay
10ms delay
50ms delay

Figure 9: Ideal [46] and observed page load times when
latency is artificially introduced in the network.

forces a checkpoint like Remus. Because multi-threaded
middleboxes introduce substantial nondeterminism, though,
Colo cannot offer us any benefits over Remus: when we ran
the MazuNAT under Colo, it checkpointed just as frequently
as Remus would have, leading to an equal median latency
penalty.

Pico is a no-replay system similar to Remus but tailored to
the middlebox domain by offering a custom library for flow
state which checkpoints packet processing state only, but
not operating system, memory state, etc., allowing for much
lighter-weight and therefore faster checkpoint. The authors
of Pico report a latency penalty of 8-9ms in their work which
is a substantial improvement over Colo and Remus, but still
a noticeable penalty due to the reliance on packet buffering
until checkpoint completion.

How does inserting PALs increase latency? To measure
the impact of PALs over per-packet latency, we used a toy
middlebox with a simple pipeline of 0, 1, or 5 locks and
ran measurements with 500-byte packets at 1Gbps with four
threads dedicated to processing in our DPDK testbed. Fig-
ure 8 shows the latency distributions for our experiments,
relative to a baseline of the same pipeline with no locks. At
5 PALS/Locks per packet, latency increases to 60µs with
5 PALS/Locks per packet, relative to a median latency un-
der 40µs in the baseline – an increase of on average 4µs
per PAL/Lock per packet. Note that this latency figure in-
cludes both the cost of PAL creation and lock insertion; the
worst case overhead for FTMB is when locks are not already
present in the base implementation.

How much does latency matter to application perfor-
mance? We measured the impact of inflated latency on
Flow Completion Times (FCTs) with both measurements
and modeling. In Figure 9, we show flow completion times
for a 2MB flow (representative of web page load sizes) given
the flow completion time model by Mittal et al. [46] marked

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06

MazuNAT
SimpleNAT

WAN Opt.
Monitor

QoS Adaptive LB

Pa
ck

et
s

Pe
r S

ec
on

d

Xen Baseline
Xen + FTMB
Xen + FTMB + Snapshotting

Figure 10: Impact of FTMB on forwarding plane
throughput.

as ‘Ideal’. Marked as ‘Observed’, we downloaded the Alexa
top-1000 [2] web pages over a LAN and over a WAN and
used tc to inflate the latency by the same amounts. In both
the datacenter and LAN cases, adding 10ms of latency on the
forward and reverse path increases flow completion times to
20× the original in the simulated case; in the experimental
LAN case it increased FCT to 10×. In the WAN case, page
load times increased to 1.5× by adding 10ms of latency from
a median of 343ms to 492ms. An experiment by Amazon
shows that every 100ms of additional page load time their
customers experienced costs them 1% in sales [40].

Given these numbers in context, we can return to Figure 7
and see that solutions based on Colo, Pico, or Remus would
noticeably harm network users’ quality of experience, while
FTMB, with introduced latency typically well under 1ms,
would have a much weaker impact.

How much does FTMB impact throughput under
failure-free operation? Figure 10 shows forwarding plane
throughput in a VM, in a VM with PAL instrumentation, and
running complete FTMB mode with both PAL instrumenta-
tions and periodic VM snapshotting. To emphasize the extra
load caused by FTMB, we ran the experiment with locally
sourced traffic and dropping the output. Even so, the impact
is modest, as expected (see §5.2). For most configurations,
the primary throughput penalty comes from snapshotting
rather than from PAL insertion. The MazuNAT and Simple-
Nat saw a total throughput reduction of 5.6% and 12.5% re-
spectively. However, for the Monitor and the Adaptive Load
Balancer, PAL insertion was the primary overhead, causing
a 22% and 30% drop in throughput respectively. These two
experience a heavier penalty since typically they have no
contention for access to shared state variables: the tens of
nanoseconds required to generate a PAL for these middle-
boxes is a proportionally higher penalty than it is for middle-
boxes which spend more time per-packet accessing complex
and contended state.

We ran similar experiments with Remus and Colo, where
throughput peaked in the low hundreds of Kpps. We also ran
experiments with Scribe [41], a publicly-available system
for record and replay of general applications, which aims
to automatically detect and record data races using page
protection. This costs about 400us per lock access due to
the overhead of page faults.10 Using Scribe, a simple two-
threaded Click configuration with a single piece of shared
state stalled to a forwarding rate of only 500 packets/second.

10Measured using the Scribe demo image in VirtualBox.

 0
 50

 100
 150
 200
 250
 300

User Mon.
QoS Load Balancer

MazuNAT
SimpleNAT

WAN Opt.

R
ep

la
y

Ti
m

e
(m

s) 20ms
50ms

100ms
200ms

Figure 11: Time to perform replay with varying check-
point intervals and middlebox configurations.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 20 40 60 80 100 120 140 160

La
te

nc
y

(m
s)

Time (ms)

70% Load
50% Load
30% Load

Figure 12: Packet latencies post-replay.

6.2 Recovery
How long does FTMB take to perform replay and how
does replay impact packet latencies? Unlike no-replay
systems, FTMB adds the cost of replay. We measure the
amount of time required for replay in Fig. 11. We ran these
experiments at 80% load (about 3.3 Mpps) with periodic
checkpoints of 20, 50, 100, and 200ms.

For lower checkpoint rates, we see two effects leading to
a replay time that is actually less than the original check-
point interval. First, the logger begins transmitting packets
to the replica as soon as replay begins – while the VM is
loading. This means that most packets are read pre-loaded to
local memory, rather than directly from the NIC. Second, the
transmission arrives at almost 100% of the link rate, rather
than 80% load as during the checkpoint interval.

However, at 200ms, we see a different trend: some mid-
dleboxes that make frequent accesses to shared variable have
a longer replay time than the original checkpoint interval be-
cause of the overhead of replaying lock accesses. Recall that
when a thread attempts to access a shared-state variable dur-
ing replay, it will spin waiting for its ‘turn’ to access the
variable and this leads to slowed execution.

During replay, new packets that arrive must be buffered,
leading to a period of increased queueing delays after execu-
tion has resumed. In Figure 12, we show per-packet latencies
for packets that arrive post-failure for MazuNAT at differ-
ent load levels and replay times between 80-90ms. At 30%-
load, packet latencies return to their normal sub-millisecond
values within 60ms of resumed execution. As expected re-
covery takes longer at higher loads: at 70% load per-packet
latency remains over 10ms even at 175ms, and the latencies
do not decrease to under a millisecond until past 300ms after
execution has resumed.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 50 100 150 200

C
om

pl
et

ed
 P

ag
es

Time (s)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 100 200 300 400

C
om

pl
et

ed
 K

B

Time (s)

Baseline
Stateful
Stateless

(a) HTTP Page Loads (b) FTP Download

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 300 600 900 1200

C
om

pl
et

ed
 M

B

Time (s)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 100 200 300 400

C
om

pl
et

ed
 M

B

Time (s)

(c) Torrent (Evolve) (d) Torrent(Ubuntu)
Figure 13: Application performance with and without
state restoration after recovery. Key (top right) is same
for all figures.

Is stateful failover valuable to applications? Perhaps the
simplest approach to recovering from failure is simply to
bring up a backup from ‘cold start’, effectively wiping out
all connection state after failure: i.e., recovery is stateless.
To see the impact of stateless recovery on real applications,
we tested several applications over the wide area with a NAT
which either (a) did not fail (our baseline), (b) went absent
for 300ms,11 during which time traffic was buffered (this
represents stateful recovery), or (c) flushed all state on fail-
ure (representing stateless recovery). Figure 13 shows the
time to download 500 pages in a 128-thread loop from the
Alexa-top US sites, percentage file completion over time for
a large FTP download, and percentage file completion for
two separate BitTorrent downloads. In all three configura-
tions, stateful recovery performs close to the performance of
the baseline. For stateless recovery over the HTTP connec-
tions, we see a sharp knee corresponding to the connection
reset time: 180 seconds12. The only application with lit-
tle impact under stateless recovery is one of the BitTorrent
downloads – however, the other BitTorrent download failed
almost entirely and the client had to be restarted! The tor-
rent which failed had only 10 available peers and, when the
connections were reset, the client assumed that the peers had
gone offline. The other torrent had a large pool of available
peers and hence could immediately reconnect to new peers.

Our point in these experiments is not to suggest that ap-
plications are fundamentally incapable of rapid recovery in
scenarios of stateless recovery, but simply that many existing
applications do not.

11We picked 300ms as a conservative estimate of recovery time; our results
are not sensitive to the precise value.

12Firefox, Chrome, and Opera have reset times of 300 seconds, 50 seconds,
and 115 seconds respectively.

7. RELATED WORK
We briefly discuss the three lines of work relevant to FTMB,
reflecting the taxonomy of related work introduced in §2.

First are no-replay schemes. In §6 we described in detail
three recent systems – Remus, Pico and Colo – that adopt
this approach and compared FTMB to them experimentally.

The second are solutions for rollback recovery from the
distributed systems literature. The literature includes a wide
range of protocol proposals (we refer the reader to Elnozahy
et al. [31] for an excellent survey); however, to our knowl-
edge, there is no available system implementation that we
can put to the test for our application context.13 More gen-
erally, as mentioned earlier, the focus on distributed sys-
tems (as opposed to a parallel program on a single machine)
changes the nature of the problem in many dimensions, such
as: the failure model (partial vs. complete failure), the na-
ture of non-determinism (primarily the arrival and sending
order of messages at a given process vs. threads that ‘race’
to access the same variable), the frequency of output (for us,
outputs are generated at a very high rate) and the frequency
of nondeterminism (per-packet for us), and where the per-
formance bottlenecks lie (for us, in the logging and output
commit decision). These differences led us to design new
solutions that are simpler and more lightweight than those
found in the literature.

The final class of solutions are the multicore record-and-
replay systems used for debugging. These do not implement
output commit. We discussed these solutions in broad terms
in §2 and evaluated one such system (Scribe) in §6.

In the remainder of this section we briefly review a few
additional systems.
Hypervisor-based Fault Tolerance [18] was an early, pio-
neering system in the 90s to implement fault-tolerance over
arbitrary virtual machines; their approach did not address
multicore systems, and required synchronization between
the master and replica for every nondeterministic operation.
SMP Revirt [29] performs record-and-replay over Xen VMs;
unlike FTMB SMPRevirt is hence fully general. As in
Scribe, SMP ReVirt uses page protection to track memory
accesses. For applications with limited contention, the au-
thors report a 1.2-8x slowdown, but for so-called “racy” ap-
plications (like ours) with tens or hundreds of thousands of
faults per second we expect results similar to those of Scribe.
Eidetic Systems [24] allow a user to replay any event in the
system’s history – on the scale of even years. They achieve
very low overheads for their target environment: end user
desktops. However, the authors explicitly note that their so-
lutions do not scale to racy and high-output systems.
R2 [36] logs a cut in an application’s call graph and intro-
duces detailed logging of information flowing across the cut
using an R2 runtime to intercept syscalls and underlying li-
braries; the overhead of their interception makes them poorly
suited to our application with frequent nondeterminism.
ODR [16] is a general record-and-replay system that pro-

13In their survey paper, Elnozahy et al. state that, in practice, log-based
rollback-recovery has seen little adoption due to the complexity of its algo-
rithms.

vides output determinism: to reduce runtime overhead ODR
foregoes logging all forms of nondeterminism and instead
searches the space of possible executions during replay. This
can result in replay times that are several orders of magni-
tude higher than the original execution (in fact, the search
space is NP hard). This long replay time is not acceptable for
applications looking to recover from a failure (as opposed to
debugging post-failure).

8. DISCUSSION
We presented FTMB, a system for rollback recovery

which uses ordered logging and parallel release for low over-
head middlebox fault-tolerance. We showed that FTMB im-
poses only 30µs of latency for median packets through an
industry-designed middlebox. FTMB has modest through-
put overheads, and can perform replay recovery in 1-2 wide
area RTTs. Before closing, we discuss the growing NFV
software ecosystem and how FTMB fits into this future.

User-Level Packet Processing Stacks. Significant ef-
forts in industry and research aim to allow for fast packet-
processing in user space (e.g. netmap [52], DPDK [38]) in
and out of virtual machines [39,45,53–55]. At present, none
of these new systems support seamless virtual machine mi-
gration. This support will be required as NFV stacks be-
come more widely deployed; once these systems do support
migration they will be compatible with FTMB.

New Virtualization Techniques and Fast Checkpoint-
ing. Linux Containers [5] offer finer-grained virtualization
than Xen, offering processes isolation while sharing oper-
ating system components. Containers enable cheaper snap-
shotting, as less memory is copied per snapshot. Several on-
going efforts are exploring hardware and software support
for faster snapshotting [1, 20] which will improve migration
and reliability systems [11, 23] thereby improving FTMB’s
tail latencies introduced by VM suspension.

Varied Operating Systems and Hardware Compo-
nents. One of the oft-touted benefits of NFV [32] is the
potential for a wider range of diversity in system software
stacks and hardware; wider at least, than today’s closed-
down, all-in-one ‘appliances’. With this change comes the
opportunity to extend the failure model assumed by FTMB
and other systems (e.g. [23]): by running different drivers,
NICs, and operating systems outside of the virtualization
layer, one may be able to protect against not only hardware
and software failures, but bugs fundamental to the choice of
driver, NIC, OS, etc., by failing over to a machine with en-
tirely different components.

Diverse Middlebox Software. The Open Source Com-
munity offers software implementations of many middle-
boxes; e.g., Snort [8], Bro [10], Vyatta [12], and Squid [9],
as does the broader industry. While we experimented
with Click-based middlebox implementations, we expect our
techniques should be equally applicable to these other sys-
tems. In addition, vendors of hardware-based appliances are
increasingly re-architecting their products as software-only
implementations. Hence we expect the potential application
of FTMB to only grow in the future.

If the NFV ecosystem continues to gain traction with the
above software trends, it will need a practical, low-overhead
solution for reliability. We envision FTMB’s approach – or-
dered logging and parallel release – to be that solution.

9. ACKNOWLEDGEMENTS
We thank the anonymous reviewers of the SIGCOMM

program committee and our shepherd Jeff Chase for their
thoughtful feedback on this paper. We thank the middlebox
vendors we spoke with for helpful discussions about FTMB,
reliability practices, and state of the art network appliances.
Jiawei Chen and Eddie Dong at Intel kindly shared the Colo
source code and helped us deploy it in our lab at Berke-
ley. Kay Ousterhout provided feedback on many iterations
of this paper. This material is based upon work supported by
the National Science Foundation Graduate Research Fellow-
ship under Grant No. DGE-1106400. This work was in part
made possible by generous financial support and technical
feedback from Intel Research.

10. REFERENCES
[1] A Peek into Extended Page Tables.

https://communities.intel.com/community/itpeernetwork/datastack/
blog/2009/06/02/a-peek-into-extended-page-tables.

[2] Alexa: Actionable Analytics for the Web. http://www.alexa.com/.
[3] Clang Static Analyzer. http://clang-analyzer.llvm.org/.
[4] Intel PRO/1000 Quad Port Bypass Server Adapters.

http://www.intel.com/content/www/us/en/network-adapters/
gigabit-network-adapters/pro-1000-qp.html.

[5] LXC - Linux Containers. https://linuxcontainers.org/.
[6] Remus PV domU Requirements.

http://wiki.xen.org/wiki/Remus_PV_domU_requirements.
[7] Riverbed Completes Acquisition of Mazu Networks.

http://www.riverbed.com/about/news-articles/press-releases/
riverbed-completes-acquisition\-of-mazu-networks.html.

[8] Snort IDS. https://www.snort.org/.
[9] Squid: Optimising Web Delivery. http://www.squid-cache.org/.

[10] The Bro Network Security Monitor. https://www.bro.org/.
[11] VMWare vSphere. https://www.vmware.com/support/vsphere.
[12] Vyatta. http://www.vyatta.com.
[13] Wikipedia:seqlock. http://en.wikipedia.org/wiki/Seqlock.
[14] Multi-Service Architecture and Framework Requirements.

http://www.broadband-forum.org/technical/download/TR-058.pdf,
2003.

[15] A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan,
R. Ramjee, and G. Varghese. EndRE: An End-System Redundancy
Elimination Service for Enterprises. In Proc. USENIX NSDI, 2010.

[16] G. Altekar and I. Stoica. ODR: Output-Deterministic Replay for
Multicore Debugging. In Proc. ACM SOSP, 2009.

[17] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating
Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.80 edition,
May 2014.

[18] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault
Tolerance. In Proc. ACM SOSP, 1995.

[19] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs. In Proc. USENIX OSDI, 2008.

[20] J. Chung, J. Seo, W. Baek, C. CaoMinh, A. McDonald, C. Kozyrakis,
and K. Olukotun. Improving Software Concurrency with
Hardware-assisted Memory Snapshot. In Proc. ACM SPAA, 2008.

[21] E. G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks.
ACM Comput. Surv., 3(2):67–78, June 1971.

[22] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A.
Gibson, and R. E. Bryant. Parrot: A Practical Runtime for

https://communities.intel.com/community/itpeernetwork/datastack/blog/2009/06/02/a-peek-into-extended-page-tables
https://communities.intel.com/community/itpeernetwork/datastack/blog/2009/06/02/a-peek-into-extended-page-tables
http://www.alexa.com/
http://clang-analyzer.llvm.org/
http://www.intel.com/content/www/us/en/network-adapters/gigabit-network-adapters/pro-1000-qp.html
http://www.intel.com/content/www/us/en/network-adapters/gigabit-network-adapters/pro-1000-qp.html
https://linuxcontainers.org/
http://wiki.xen.org/wiki/Remus_PV_domU_requirements
http://www.riverbed.com/about/news-articles/press-releases/riverbed-completes-acquisition\-of-mazu-networks.html
http://www.riverbed.com/about/news-articles/press-releases/riverbed-completes-acquisition\-of-mazu-networks.html
https://www.snort.org/
http://www.squid-cache.org/
https://www.bro.org/
https://www.vmware.com/support/vsphere
http://www.vyatta.com
http://en.wikipedia.org/wiki/Seqlock
http://www.broadband-forum.org/technical/download/TR-058.pdf

Deterministic, Stable, and Reliable Threads. In Proc. ACM SOSP,
2013.

[23] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High Availability via Asynchronous Virtual
Machine Replication. In Proc. USENIX NSDI, 2008.

[24] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen. Eidetic
Systems. In Proc. USENIX OSDI, 2014.

[25] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
Shared Memory Multiprocessing. In Proc. ACM ASPLOS, 2009.

[26] Digital Corpora. 2009-M57-Patents packet trace.
http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/net/.

[27] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism To Scale Software Routers. In
Proc. ACM SOSP, 2009.

[28] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan. COLO:
COarse-grained LOck-stepping Virtual Machines for Non-stop
Service. In Proc. ACM SoCC, 2013.

[29] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen.
Execution Replay of Multiprocessor Virtual Machines. In Proc. ACM
SIGPLAN/SIGOPS VEE, 2008.

[30] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent roll
back-recovery with low overhead, limited rollback, and fast output
commit. IEEE Trans. Comput., 41(5):526–531, May 1992.

[31] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
Survey of Rollback-Recovery Protocols in Message-passing
Systems. ACM Comput. Surv., 34(3):375–408, Sept. 2002.

[32] European Telecommunications Standards Institute. NFV Whitepaper.
https://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[33] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing Network-wide Policies in the Presence of Dynamic
Middlebox Actions Using Flowtags. In Proc. USENIX NSDI, 2014.

[34] M. Flajslik and M. Rosenblum. Network Interface Design for Low
Latency Request-Response Protocols. In Proc. USENIX ATC, 2013.

[35] A. Gember, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. OpenNF: Enabling Innovation in Network
Function Control. In Proc. ACM SIGCOMM, 2014.

[36] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek,
and Z. Zhang. R2: An Application-Level Kernel for Record and
Replay. In Proc. USENIX OSDI, 2008.

[37] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a
GPU-accelerated Software Router. In Proc. ACM SIGCOMM, 2010.

[38] Intel. Data Plane Development Kit. http://dpdk.org/.
[39] Intel. PCI-SIG SR-IOV Primer: An Introduction to SR-IOV

Technology. http://www.intel.com/content/www/us/en/pci-express/
pci-sig-sr-iov-primer-sr-iov-technology-paper.html.

[40] R. Kohavi and R. Longbotham. Online experiments: Lessons
learned. Computer, 40(9):103–105, 2007.

[41] O. Laadan, N. Viennot, and J. Nieh. Transparent, Lightweight
Application Execution Replay on Commodity Multiprocessor
Operating Systems. In Proc. ACM SIGMETRICS, 2010.

[42] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[43] C. Lattner and V. Adve. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proc. IEEE CGO,
2004.

[44] J. R. Lorch, A. Baumann, L. Glendenning, D. Meyer, and
A. Warfield. Tardigrade: Leveraging Lightweight Virtual Machines
to Easily and Efficiently Construct Fault-Tolerant Services. In Proc.
USENIX NSDI.

[45] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici. ClickOS and the Art of Network Function
Virtualization. In Proc. USENIX NSDI, 2014.

[46] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Recursively
Cautious Congestion Control. In Proc. USENIX NSDI, 2014.

[47] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving
Network Connection Locality on Multicore Systems. In Proc. ACM
EuroSys, 2012.

[48] R. Potharaju and N. Jain. Demystifying the Dark Side of the Middle:
A Field Study of Middlebox Failures in Datacenters. In Proc. ACM
IMC, 2013.

[49] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
SIMPLE-fying Middlebox Policy Enforcement Using SDN. In Proc.
ACM SIGCOMM, 2013.

[50] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico Replication: A
High Availability Framework for Middleboxes. In Proc. ACM SoCC,
2013.

[51] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Split/Merge: System Support for Elastic Execution in Virtual
Middleboxes. In Proc. USENIX NSDI, 2013.

[52] L. Rizzo. netmap: a Novel Framework for Fast Packet I/O. In Proc.
USENIX ATC, 2012.

[53] L. Rizzo and G. Lettieri. Vale: a Switched Ethernet for Virtual
Machines. In Proc. ACM CoNEXT, 2012.

[54] L. Rizzo, G. Lettieri, and V. Maffione. Speeding Up Packet I/O in
Virtual Machines. In ACM/IEEE ANCS, pages 47–58, 2013.

[55] R. Russell. virtio: Towards a De-facto Standard for Virtual I/O
Devices. ACM OSR, 42(5):95–103, 2008.

[56] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-threaded
Programs. In Proc. ACM SOSP, 1997.

[57] F. B. Schneider. Implementing Fault-tolerant Services Using the
State Machine Approach: A Tutorial. ACM Comput. Surv.,
22(4):299–319, Dec. 1990.

[58] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
Implementation of a Consolidated Middlebox Architecture. In Proc.
USENIX NSDI, 2012.

[59] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Service. In Proc. ACM SIGCOMM, 2012.

[60] R. Strom and S. Yemini. Optimistic Recovery in Distributed
Systems. ACM Trans. Comput. Syst., 3(3):204–226, Aug. 1985.

[61] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy. DoublePlay: Parallelizing Sequential
Logging and Replay. In Proc. ACM ASPLOS, 2012.

[62] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An Untold Story of
Middleboxes in Cellular Networks. In Proc. ACM SIGCOMM, 2011.

http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/net/
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://dpdk.org/
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html

	Introduction
	Problem Space
	System Model
	Failure Model
	Challenges

	Goals and Design Rationale
	Goals
	Existing Middleboxes
	Design Options
	 No-Replay Designs
	Replay-Based Designs

	Design
	Defining Determinants
	How to Log Determinants
	Defining a Packet's Dependencies
	Output Commit

	System Implementation
	Input Logger
	Master
	Output Logger
	Periodic snapshots
	Replay

	Evaluation
	Overhead on Failure-free Operation
	Recovery

	Related Work
	Discussion
	Acknowledgements
	References

