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Abstract
Function calls are a basic primitive by which applica-
tions invoke services from external entities. In this paper,
we propose “network calls” (netcalls), a general primi-
tive to invoke advanced traffic processing services – such
as firewalling or caching – from the network. We de-
sign and implement the netcalls API and a backend ar-
chitecture to support netcalls, allowing end host appli-
cations to interact with services not only in their own
access network, but any network their traffic traverses.
Demonstrating the utility of netcalls, we built three ap-
plications to invoke netcalls, along with corresponding
network services: interdomain firewalling for DDoS de-
fense, ‘opportunistic’ traffic compression, and intrusion
detection for mobile phones.

1 Introduction
Function calls are a basic primitive by which applications
invoke services from external entities. For example, ap-
plications make syscalls to the kernel, and remote proce-
dure calls to network servers. In this paper, we propose
“network calls” (netcalls), an equivalent primitive to in-
voke advanced traffic processing services from the net-
work. Processing services in use today include firewalls,
intrusion detection systems, proxies, and caches. These
devices are typically transparent to end hosts, in that the
end hosts cannot communicate with these devices nor are
end host applications even aware of their presence.

However, there are cases today where application in-
put or control of network services would be valuable but
there’s no easy way to do so. For example, we updated
three applications to use netcalls to invoke advanced traf-
fic processing services deployed on our testbed: a web
client that invokes traffic compression for large down-
loads, a webserver whose QoS/load monitoring module
initiates DDoS defense, and an Android WiFi interface
that preferentially connects to networks that deploy in-
trusion detection services tailored to mobile phones. To-
day, it is not possible to deploy applications like these.

We anticipate a growing need for traffic processing
services due to the trend towards lightweight client de-
vices and growing prevalence of cloud-based services.
Such clients will increasingly rely on applications of-
floaded to run either entirely or partially in the cloud.
Consequently, the network’s impact on user experience
grows and hence so does the role for network optimiza-
tions and new services, e.g. low latency paths to dat-
acenters, or network caching in cooperation with cloud

services. In addition, we speculate that having an API
that application developers can write to will be of inter-
est to network operators interested in monetizing their
deployment of new features.

In the netcalls design, we take a broad view of what
constitutes “the network”: invoked services may be im-
plemented by the invoking client’s local-area network,
the networks of the endpoints the client communicates
with, intermediate ISP networks, combinations of the
above, and so forth. Within the network, services may
be implemented in on-path switches and routers, servers
embedded in the network, in the cloud, etc. However,
netcalls hides this complexity from the application devel-
oper, instead presenting a simplified abstraction of a sin-
gle logical network with a capability that can be turned
on, off, or configured. For example:

fw = BasicFirewall.init(...);
fw.block("9.8.7.0/24");

To application developers, the abstraction of a single log-
ical network is appealing for its simplicity – the client
only specifies what service it wants invoked. For oper-
ators, this abstraction is appealing since they don’t have
to expose the details of their network topology or routes,
and they have flexibility in how they implement a service.

Nevertheless, implementing this abstraction is chal-
lenging because the logical network is in reality a large-
scale federation of independent networks each with their
own policy and deployment goals. Particularly challeng-
ing is that, in such an environment, it is unrealistic to
expect the universal adoption of any service, or even of
the netcall mechanisms we propose. Instead, we must
assume some networks will implement a particular ser-
vice while others may choose not to. Likewise, some
networks might implement the netcall solutions we pro-
pose, others not. Thus any solution we devise must be
compatible with the characteristics of a federated envi-
ronment – scale, distributed control, settlements through
bilateral relationships, etc. – while operating under the
constraints of partial deployment. As we elaborate on
in the following section, these requirements complicate
notions of service discovery, availability and invocation.

The contribution of this paper is the design, imple-
mentation, and evaluation of the netcall API and the
“backend” netcall architecture that implements the in-
frastructure needed to support this API. In the rest of
this paper, we describe the netcalls API and support-
ing architecture(§2-§5) and the implementation of netcall
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Fig. 1: A client invokes a firewall with netcalls.
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Fig. 2: A Resolution ISP initializes an interdomain ser-
vice.

services and end host applications (§6). We then evaluate
(§7), discuss related work (§8), and conclude (§9).

2 Overview
To illustrate the netcalls API and backend architecture,
we begin with an example; we subsequently discuss our
key design decisions.

Figure 1 shows a client application using netcalls to
initialize a firewall, labeled BasicFirewall. First (1,2),
the client initializes the firewall, after which the network
will redirect all of the client’s inbound traffic to traverse
a middlebox, server, or programmable router that can
perform firewalling. Then, in (3,4), the client config-
ures the firewall, adding a new rule to its access con-
trol list; the firewalling devices update themselves ac-
cordingly. After these two steps, all traffic destined for
the client will traverse firewalls and be filtered according
to the client’s demands. However, the client application
is never concerned with which middleboxes process its
traffic or where its traffic is routed; the client’s abstrac-
tion is only of a single logical network with a named ca-
pability that can be turned on or off, or configured.

Before discussing any technical mechanisms behind
this process, we assign terminology to Fig 1. We refer to
named capabilities like BasicFirewall as services, iden-
tified by a service name. Clients use netcalls to initial-
ize and configure services. Initialization (the first step in
Fig. 1) refers to instructing the network to redirect the
client’s traffic to a device that performs the requested
service. Configuration occurs in Fig. 1 with (3), when
the client adds a new rule to the firewall. We refer to
‘configuration’ when clients specify service-specific cus-
tomization, e.g. adding a rule to a firewall, specifying a
cache timeout policy for a proxy, or requesting summary
statistics from a traffic monitor. The configuration step is
service-specific in that it would not make sense to spec-

ify a cache timeout policy to a firewall, or add a filtering
rule to a traffic monitor. Hence, each service name is as-
sociated with a service protocol – a set of functions de-
fined independently for each service. For BasicFirewall,
add rule is a function contained within its service pro-
tocol. One final step not illustrated in Fig. 1 is invocation,
when the client’s packets traverse a specialized device in
the network and trigger service processing.

Returning to our example, we now look to the net-
work’s perspective of initializing the firewall, shown in
Fig. 2. When the client initializes BasicFirewall, it sends
a request to a server hosted by its local ISP. Since the
local ISP does not deploy middleboxes or servers to per-
form BasicFirewall functionality, it must forward the re-
quest to one or more external ISP(s) capable of per-
forming BasicFirewall. The server then consults an au-
tonomous system (AS) level graph of nearby networks,
and selects two external ISPs who together serve all of
the client’s inbound traffic. It forwards the client’s ini-
tialization request to these two external ISPs, and after
their acknowledgments, it stores a record of the client’s
request and the selected ASes. The ISP then acknowl-
edges success to the client. The ISP must store a record
of the client’s request in order to handle any future re-
quests from the client. For example, when the client re-
quests to add a rule to the BasicFirewall (shown in Fig 1
but not Fig.2), the ISP must be able to recall which exter-
nal networks are providing service for the user, and then
forward the client’s request to them.

We refer to any network that deploys a service like Ba-
sicFirewall as a service network; in Fig. 2 ASes 2 and 4
are service networks. AS 1, on the other hand, serves
as a resolution ISP or RISP; we refer to the server the
client directs its requests to as a resolution server. RISPs
are responsible for taking in client requests and then per-
forming discovery (finding out which networks support
the client’s requested service), resolution (selecting an
appropriate set of networks to perform the service), and
implementation (either updating the local network to per-
form the service, or forwarding the client’s request to ex-
ternal networks who will then perform the service). We
assume that each client contracts with one or more net-
works to serve as its RISP. We say ‘contracts with’ be-
cause we expect that providers will charge for access to
services. Correspondingly, when a RISP forwards a re-
quest to another service network, there must be a con-
tractual relationship in place between the RISP and the
other network. Service networks that a RISP settles with
are called the RISP’s service peers.

Design Decisions

A core goal in each of our design choices is to adapt to
partial deployment: the assumption that no service will
be adopted by 100% of networks and hosts, nor even will

2



support for netcalls be fully adopted.
RISPs. As described above, clients only convey net-

calls to a resolution server hosted at a single network,
the client’s RISP. We chose this model for two reasons.
First, it simplifies application logic. Consider a client
invoking some service S that it requires once, on the for-
warding path from itself to a destination D. Where are
there devices that can perform S? How does D direct
its traffic to these devices? By making these questions
the responsibility of a RISP, application developers write
logic to request services, but don’t have to write logic for
discovering where and how services are performed in the
network. Second, contacting only a single RISP simpli-
fies the process of payment/settlement. Client payments
for interdomain services require a contract with a single
ISP, rather than several (just as they pay for Internet ser-
vice today). ISPs maintain a contract with clients (just
as they do today) and service peers, networks who they
have business relationships with for services (just as they
have peering relationships for traffic exchange today).

API Design. Directing traffic through a RISP leads
to a new challenge: how is the RISP able to resolve re-
quests to services that it does not support itself? For ex-
ample, in resolving a users initialization request, how is
the RISP to know that a firewall should be applied once
on inbound traffic, but that a WAN optimizer should be
deployed twice at the endpoints of communication? We
resolve this by adding a set of parameters called a place-
ment pattern to a clients initialization request: placement
patterns are a general abstraction by which clients de-
scribe where in the network to place the service. We de-
scribe placement patterns in depth in §3.

Service Invocation. Netcalls separates service initial-
ization from invocation: services are initialized when
clients request them from their RISP, and processing is
invoked when the client’s traffic traverses a device sup-
porting the service. This model allows netcall clients to
continue to interact with – and invoke services on traf-
fic to and from – other end hosts who have not adopted
netcalls. In a traditional model [34, 27, 33], packets des-
tined for service processing contain a new header de-
scribing their service demands. Embedding a service-
specific header means that the sender must have adopted
the service; if the sender does not support the new ser-
vice, it cannot be used. However, for services like Ba-
sicFirewall the receiver is the endpoint that wants ser-
vice processing, not the sender. With netcalls either the
sender or the receiver can request processing features; it
is not necessary for both hosts to adopt netcalls for one
of the hosts to initialize services independently.

Best Effort Availability. As a fundamental conse-
quence of partial deployment, netcalls adopts a service
model of best effort availability. A client application
may request a service that is not supported by any nearby

AS1
AS2

AS1
AS2

AS1
AS2

(a) Individual (b) Perimeter (c) Path
Fig. 3: INIT request Placement Patterns.

network, in which case the network will return an error
informing the client that the service is unavailable. No
architecture can compensate for a service the network
simply doesn’t offer. As a consequence, applications
must be prepared to adapt to service unavailability. For
example, in Section 6 we’ll show a mobile phone that
turns on extra anti-virus when connecting to a network
that does not support an intrusion detection system.

3 API
We now describe the netcalls API in detail. As men-
tioned previously, netcall services represent standardized
protocols accompanied by an identifier (a service name).
Clients sent their netcall requests to a resolution server
which exposes five basic functions to its clients, that to-
gether form the client API. Clients discover their reso-
lution server via DHCP or manual configuration. While
our discussion treats the resolution server as a single en-
tity, a large RISP may use standard approaches for repli-
cation to achieve scalability and reliability.

Beyond exposing the API, an additional responsibility
of the resolution server is enforcing policy, first, in the
types of services it allows clients to invoke, and second,
in to whom services apply. An example of the former is
an enterprise network which hosts a resolution server; the
enterprise’s server might drop all requests that attempt
to manipulate firewall settings. The latter simply means
authenticating clients and enforcing that clients can only
invoke services for their own traffic.

We now discuss the client API’s five functions, focus-
ing on the INIT function, which is the core of the API.

(1) INIT. The core function in the client-RISP protocol
is INIT, which allows the client to instantiate a service.
In addition to the service name, INIT messages specify
what traffic the service should apply to, and where the
service should be performed. As discussed in §2, this is
specified through a placement pattern, a general model
that captures how and where the network should apply
the service. We identify three key placement patterns
(see Fig. 3) that we believe allow us to represent a broad
set of service requirements:

(i) ‘Individual’, in Fig. 3a, allows a client to specify
directly an IP address or ASN; the resolution server then
contacts that network directly. Individual requests have
no other parameters.

(ii) ‘Perimeter’, in Fig. 3b, constructs a border of
service-performing networks between the requester net-
work and an external address. Perimeter INIT requests
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Function Forwarding requirements
User’s prefix Prefix or IP (/32) whose traffic should traverse the service.
External prefix External prefix or IP whose traffic to or from the client should traverse the service.
User/External Port Port numbers of traffic that should traverse the service (0 for all port numbers).
Incoming, Outgo-
ing, or Bidirectional

Whether the service should be applied on traffic destined to the requester, from the requester, or
on traffic flowing both directions to and from the requester.

Frequency
How many times the service needs to be supported on the traffic’s path. (1) once, (2) twice, (3)
as many times as possible, (4) at every hop of the path.

Placement
Whether the service is required in the client’s network, required in the external prefix’s network,
should be place near the clients network, or near the external prefix’s network.

Table 1: Parameters for ‘Path’ INIT requests allow the requester to describe their service’s topological requirements.

use the following parameters:
External Prefix: the border is constructed between the
requester and this specified prefix. A /0 requests a border
around the requester for all incoming traffic.
Proximity: whether or not the border should be near the
requester, or pushed towards the specified address.
Partial Coverage: If a complete border cannot be con-
structed, construct a partial border.
Single Instance: Only one network may construct the
perimeter. By default, the RISP may resolve the clients
request to multiple networks in order to construct a com-
plete border. However, some services such as intrusion
detection require a complete view of all traffic.

(iii) ‘Path’, in Fig. 3c, applies a service along a path
between the requester and a specified IP address or pre-
fix, for either incoming or outgoing traffic. Path requests
include the most descriptive parameters of the three invo-
cation patterns. These parameters allow the client to con-
vey (for example) that a flow receive transcoding once,
anywhere along the path; or that a flow receive a ded-
icated amount of bandwidth at every router across the
network. Table 1 shows the list of parameters, which we
drew from previous efforts at taxonomizing middlebox
behavior [14] and our own analysis of usage scenarios.

Given a placement pattern, the RISP uses its knowl-
edge of network topology acquired from BGP routes and
its own peers to select a set of networks that are topolog-
ically appropriate and with which the RISP has settle-
ment agreements. The RISP then queries these networks
for their willingness to service the client’s request (using
the protocol described in §4). On receiving a positive re-
sponse, the client’s RISP creates a unique service token
and stores a service resolution record (SRR) that maps
from token to the client name, INIT parameters and ASes
assigned to perform the service. The RISP then returns
the token to the client; if the resolution server cannot re-
solve the INIT request, it returns an error. Because the
RISP will serve as the client’s only gateway to the ser-
vice – the client does not keep track of the specific mid-
dleboxes or networks performing his service – the reso-
lution server must keep the SRR in local state in order to
forward update messages (e.g. to kill the service once no

longer needed) to the appropriate external networks.

The four remaining client API functions are:

(2) CONFIG. After the RISP enables the service, the
client may need to invoke subsequent service-specific as
part of a service-specific protocol. With a CONFIG mes-
sage, the client specifies the relevant service token and an
opaque field within which the client places the desired
service-specific messages (for example, set rule:
block 9.8.7.0/24 for a firewall). On receiving a
CONFIG message, the RISP maps the client token to
the corresponding set of services ASes and forwards the
client’s message to these ASes; the RISP does not need
to understand any service-specific contents.

(3) KEEPALIVE. This message extends the lifetime of
the service, as the RISP periodically culls long-living
INIT state past its expiration date.

(4) TERM. Terminates the service.

(5) GETCONFIG. Requests a list of all configurations
(INIT tokens, services, and parameters from INIT mes-
sages) which apply to the client’s IP address or prefix.

Before moving on, we note that the client interface can
be used by different types of ‘client.’ For example, an en-
terprise might register with a RISP for services on behalf
of its entire network. INIT requests allow the enterprise
administrator to specify requests on behalf of a prefix,
thus setting a single policy on behalf of the whole subdo-
main. In this case, the RISP would recognize the creden-
tials of the enterprise networks administrator as overrid-
ing the requests of other end hosts within the enterprise,
e.g. not allowing hosts to disable a firewall.

4 Services and RISPs

We now discuss the features of a RISP supporting net-
calls: a network-to-network API to communicate with
service providing networks (§4.1), a set of algorithms
for service discovery and resolution to choose which net-
works should support each user’s request (§4.2), and op-
tionally, availability extensions which broaden access to
interdomain services.
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4.1 Network-to-Network Protocol

Just as ISPs expose a resolution server with an API for
their customers, ISPs also expose a server and API to
other networks. For simplicity, we refer to the network-
to-network server as a resolution server as well, although
it need not be the same entity as the resolution server
exposed to clients. With the network-to-network API,
ISPs (1) allow external networks to initialize and con-
figure services and (2) share information to help external
networks select appropriate networks for their client’s re-
quests.

To allow networks to express their requests for ser-
vices, the network-to-network protocol provides a simple
SVC REQUEST interdomain function that encapsulates
a client’s INIT, CONFIG, and TERM requests.

For an ISP to accept a request to invoke a service, how-
ever, we must ensure that inter-network actions are both
authoritative and accountable. Authority means that re-
quests are verified to originate from an entity with owner-
ship of the impacted IP address or prefix. Accountability
means that for any service provided, the network always
has means to charge for use of the service. Our demand
for accountability does not reflect any particular payment
model; it only guarantees that there is some network in
place to hold responsible for payment so that if networks
wish to develop billing models, they may.

These requirements are far from onerous, as peering
relationships are sufficient to verify both authority and
accountability. As peers, the networks exchange their
public keys and allocated prefixes out of band. Networks
which are not physically connected may still peer over
services alone. A network AS2 can verify the authentic-
ity of AS1’s requests by checking the message’s signa-
ture and checking that the IP or prefix impacted by the
configuration is in a prefix allocated to AS1. AS2 knows
that the configuration is accountable, because it has a sig-
nature proving the request came from AS1 and it already
has channels in place for settlement with its peer. An AS
could lie to a peer, but peering relationships reflect real-
world trust. Violation of that trust is cause for severance
of the relationship and even legal action.

An additional network-to-network function is the
INFO REQUEST function that allows an ISP to inform
other networks whether or not it supports a service, tell
a network for whom it is performing services whether or
not a service is still active, announce who its AS-level
neighbors are, and share its AS-level forwarding paths.
As we’ll show in the following section, this information
can help external resolution servers to select appropriate
networks to perform services for their customers.

4.2 Discovery and Resolution

Before invoking services, a RISP must first resolve a
client’s request to a particular network that can appropri-

ately provide the client’s requested service. In this dis-
cussion, we show that resolution is reasonably achieved
with limited information and basic techniques. However,
we note that the particular data and algorithms we de-
scribe are not the only way to acquire the required in-
formation: a RISP may use more sophisticated methods,
which would only improve netcalls’s capabilities.
Individual Request. We start with a simple Individual
INIT query: a client u requests that its traffic receive the
EasyTranscode service in some IP address v’s AS. If
the RISP peers with the external AS, the resolution server
queries the AS’s resolution server directly to discover
whether or not it offers EasyTranscode. The RISP
may cache the results of the query to avoid requerying in
the future; networks are unlikely to frequently deploy or
withdraw services. If the AS supports the services, the
RISP sends a SVC REQUEST message and after returns
a service token to the client. If any of these steps fail, the
RISP returns an error to the client.
Perimeter Request. We now move to an example where
u sends a Perimeter INIT request, requesting that a
BasicFirewall be deployed between itself and an-
other address v. First, u’s RISP itself might support the
service, in which case the tightest perimeter around u is
to invoke the service locally. If not, and if u allows the
perimeter to extend outside the local AS, the RISP can
look to its physically connected peers and invoke the ser-
vice at its neighbors. If one of its peers does not support
the service, it can send the peer an INFO REQUEST for
a list of their peers, and so on1.
Path Request. To resolve a Path INIT request, u’s reso-
lution server needs to know the AS-level paths for traffic
both to and from u. Obtaining the path u takes en route
to an external destination is straightforward: BGP tables
provide an AS Path for every globally announced pre-
fix. For traffic destined to u from some external source
v, the resolution server can send an INFO REQUEST to
the resolution server at v’s ISP, requesting the AS path.
In the absence of a resolution server at v’s ISP, u’s reso-
lution server can issue a reverse traceroute [19] to mea-
sure the path. Once the RISP discovers the relevant path,
it can then look up the resolution server for each ASN,
query them for whether they support the requested ser-
vice, and decide whether the path fits the clients INIT
parameters. If it does, it enables the service at the appro-
priate ASes, and if not it returns an error.

We note that, unlike Individual and Perimeter services,
Path services are vulnerable to service disruption caused
by routing updates that change a path after services are
enabled. Thus the RISP must monitor service perform-

1Because the AS graph fans out quickly, in practice it is typically
only feasible to invoke services at the local ISPs, or at the local ISP’s
peers; two hops or more away from the local ISP and one would face
invoking services in potentially hundreds of networks
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ing paths to ensure they continue to meet the client’s de-
mands. While the client application and service interface
are responsible for monitoring the service functionality
itself (i.e. is it performing its duties correctly), the RISP
is responsible for ensuring that the client’s traffic contin-
ues to traverse the network assigned to the service. Our
implementation monitors INIT configurations assigned
to forward, default paths by watching BGP path updates,
periodically issuing traceroutes, and requesting updated
AS paths from resolution servers in peer networks. If the
path ceases to traverse the service-performing AS, the
RISP reports an error to the client.

4.3 Extensions for Improved Availability

Our basic design allows clients to invoke services in any
network which their RISP peers with and which their
traffic traverses. We now describe extensions which net-
works can optionally support to expand availability.

Service brokers. Our discussion so far has assumed a
RISP only negotiates with service-providing ASes with
which it has a direct agreement regarding settlements.
While simple, it can be unrealistic for a RISP to main-
tain service peering relationships with a large number
of other networks and this might lead to low availabil-
ity of services. Brokers address this concern. If a RISP
A wishes to invoke a service in an AS C with whom it
does not (service) peer, but both A and C are peers of a
third AS B, then AS B may serve as a ‘broker’ for the
exchange between A and C.

Multipath routing. This optimization aims to im-
prove availability for ‘Path’ services in the event that the
default AS path does not include an appropriate service-
providing network. In such cases, the RISP may provide
increased availability by considering alternate policy-
compliant AS paths. We chose MIRO [35] as our mul-
tipath routing solution because it is simple, backwards-
compatible with BGP and functions through bilateral
agreements in a manner that does not require the par-
ticipation of every AS on the path.

Remote RISPs. To expand its a customer base (and
provide service access to clients whose ISPs are not
netcalls-aware), an ISP may serve as a RISP for end hosts
who receive connectivity service from another network.
The primary challenge for such a RISP is how to dis-
cover the client’s paths and nearby topology in order to
resolve the client’s request. If the client tunnels its out-
going traffic via the RISP (if the RISP is topologically
close) then the RISP can use the same strategy as it does
for its direct customers. Otherwise, the RISP discovers
outgoing paths as it does incoming. It can also leverage
active measurement from the client.

5 Designing Secure Services
A 2009 study found that 34% [11] of networks permit
their users to send traffic with any source address, not

just their own. Exploiting this, an attacker might attempt
to spoof traffic in order to avoid service processing, or to
receive service processing when it otherwise wouldn’t.
Hence, services must ensure data plane security: that
services only process traffic belonging to the real client.

Before delving in to technical solutions, we briefly
note that the problem of attacks inflating service charges
is analogous to attacks on cloud services. Cloud
providers deal with this threat not only through technical
means, but through practical pricing schemes; for exam-
ple, by placing caps on volume processed before shutting
down, or by providing logging mechanisms to allow cus-
tomers to dispute false charges. Thus, while we present
technical solutions below, we expect that providers will
pair these with responsible business practices.

We imagine the following attack scenarios,2

in which an attacker A uses spoofed traffic to manipu-
late a service invoked by a user B:
(1) To avoid undesired processing, e.g. security services,
A sends traffic to B appearing to originate from an ad-
dress B considers benign and has no security rule for. In
addition, if multipath routing is available (§4.3), A may
try to route around the service.
(2) To inflate B’s volume-based service charges, A sends
traffic appearing to originate from B or en route to B
spoofed as someone B frequently communicates with.
(3) To steal service processing, A sends his own traffic
spoofed as B to another endpoint he colludes with.

We present four solutions which address the above
three attacks:

Exhaustive Service. Inbound services which the
sender might find undesirable (primarily security appli-
cations) should be applied to all inbound traffic with a
perimeter request. Under this INIT pattern, there is no
way to avoid processing. We find that this security pol-
icy parallels security policies enforced by typical enter-
prises: all traffic traverses firewalls, no matter the origin.
This resolves attack (1).

Registered Flows. A baseline solution for attacks (2)
and (3) is to require that applications “register” every
connection. Under this model, services expose a regis-
tration function under their service interface that allows
a user to register IP addresses, port numbers, and initial
sequence numbers for a flow they want processed; thus
an attacker cannot invoke the service without knowledge
of both endpoints and the valid sequence numbers for the
connection. This solution imposes registration latency on

2While we spend this section focusing on spoofed traffic, it is worth
calling out the attacks we do not address. First, we do not resolve
Denial-of-Service, although some of our envisioned services could be
used to mitigate DoS attacks (i.e. firewalling services). DoS is a long-
standing problem in the Internet architecture; our control plane neither
worsens nor improves this state. Second, we do not consider man-in-
the-middle attacks; we assume that users trust their ISPs.
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every flow a user wants processed – the following two
solutions avoid this overhead.

Connection Termination. For processing services
that ‘terminate’ a TCP session on bilateral traffic (e.g.
WAN Optimizers or load balancers), spoofing attacks are
not possible. The middlebox maintains connections to
(and hence completes a handshake with) both endpoints,
ensuring that neither endpoint is spoofed. This solution
can resolve attacks (2) and (3), but not for processing
services that service TCP bilateral sessions without ter-
minating them, or observe only one direction of traffic.

Shared SYN Cookies. For general TCP security,
we introduce Shared SYN Cookies, which leverage
TCP SYN cookies to validate flows. Traditional SYN
cookies resolve “SYN Flood” attacks by allowing a
server to identify ACK packets for flows it previously
SYN/ACKed, without having to keep state for the incom-
plete handshake. The server sends SYN/ACK replies to
SYN requests with specially crafted sequence numbers;
each sequence number includes a coarse timestamp, an
MSS value, and a cryptographic hash of the connection’s
IP addresses, port numbers, and the timestamp. When
it later receives an ACK in reply to its SYN/ACK, it in-
spects the (Seq. Number - 1) value in the ACK and uses
the hash to validate that it represents a valid connection.

Shared SYN Cookies are generated using the same
technique as normal TCP SYN Cookies, but the user
shares its key for generating the SYN cookie hash with
the middleboxes processing its traffic. Then, the user
generates sequence numbers for all of its connections
(both those it initiates and those initiated by another user)
using SYN cookies. This allows the middlebox to vali-
date even unilateral traffic in a TCP session. Consider
a connection between our user B and another host, C.
For traffic that appears to come from B, the middlebox
inspects the SYN or SYN/ACK where B announces its
initial sequence number and validates that the hash value
originated with B. For traffic that appears to come from
C, the middlebox inspects the SYN/ACK or ACK where
C replies to B’s initial sequence number, and similarly
validates the hash. After this, it can establish an entry
in its flow table for the session. Shared SYN Cookies
safeguard against attacks (2) and (3) without any session-
specific setup nor middlebox modification to the flow.

6 Implementation
We prototyped the system components of the netcall ar-
chitecture and developed three applications that use net-
calls to leverage network services. We now describe the
components of our implementation: our prototype reso-
lution server (§6.1), the client-side libraries that imple-
ment the netcall API (§6.2) and our three prototype ap-
plications (§6.3).

INIT Resolver

Local Service 
Manager

Service Plugins

to
M-boxes

to
End User

to
Peer Resolution

Server

to BGP Speaker

State 
DB

Network
APIClient API Topology Service

State Monitor

Fig. 4: Software Architecture of Resolution Server

6.1 Resolution Server

Every network that exposes a netcall API deploys a res-
olution server. Our resolution server is a 4200-line Java
web server exposing an RPC interface to end host clients
and to other resolution servers.We illustrate the software
architecture of the resolution server in Fig. 4.

The State Database stores: (i) a list of the clients for
which the network serves as RISP, (ii) a list of the net-
work’s service peers, with the IP addresses of their res-
olution servers and the names of the services they of-
fer, and (iii) SRRs for each client request that the net-
work is currently servicing. The Topology Service main-
tains a model of the AS graph and routes which it ob-
tains by combining local BGP routes, the network’s BGP
peers, and INFO REQUEST responses from other net-
works. The Client API and Network API modules imple-
ment the client-to-RISP and RISP-to-network protocols.
The State Monitoring module monitors BGP updates for
route changes that impact SRRs in the state database and
updates these appropriately. If a BGP update disables a
service by routing away from a service-performing AS,
the state monitor sends an error to the user.

The Local Service Manager and Service Plugins are
used to configure the local network to provide traffic-
processing services. Our implementation currently as-
sumes that – akin to typical enterprise networks – ser-
vices are implemented by middleboxes and these mid-
dleboxes are deployed adjacent to a switch at a network
choke point. For our prototype deployments, we use
Click-based [20] software switches and software middle-
boxes that we run on a general-purpose server. The Local
Service Manager maintains a Service Plugin for each ser-
vice supported by the network. Each plugin implements
a standard interface with functions to call for INIT, CON-
FIG, and KILL requests. When an INIT, CONFIG, or
KILL request reaches the Local Service Manager, it calls
the appropriate function in the plugin for the service and
the plugin communicates with the switches and middle-
boxes as appropriate. On receiving an INIT request, the
plugin for the requested service updates the switch to di-
vert traffic matching the INIT request to the middlebox in
question. On receiving a CONFIG request, plugins either
forward CONFIG requests to their associated middlebox,
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1 import org.netcalls.API.*;
2 public class CompressSvc{
3 ...
4 InitPathRequest p = new InitPathRequest(
5 localIP, dstIP, localPort, dstPort,
6 COMPRESSION_SVC_ID,
7 PathParams.BIDIRECTIONAL,
8 PathParams.ENDTOEND, ...
9 );

10 ServiceToken t = ServiceManager.init(p);
11 ... //configure service
12 return t;
13 }

1 import org.netcalls.API.*;
2 import org.netcalls.CompressSvc.*;
3 ...
4 ServiceToken t = CompressSvc.init(ip, port);
5 ... //send data
6 sock.close();
7 ServiceManager.kill(t);

Fig. 5: Application developers program against standard-
ized libraries to invoke services.

or they implement some functionality at the Resolution
Server itself. We provide examples of different plugins
for our prototype applications later in this section.

6.2 Netcall Clients

A client discovers its local resolution server via a
DNS request to the resolver it is assigned by DHCP.
We implemented the netcall protocol over XMLRPC,
since it is simple to program against in many lan-
guages. The raw RPC interface is not exposed directly
to application programmers. Instead, application de-
velopers simply import a library and invoke service-
specific functions like initialize firewall() or
filter ip address(ip); the library then generates
the appropriate INIT and CONFIG requests. In Figure 5
we show an example of the code implementing the li-
brary (top), and the code implemented by the application
developer (bottom). As a consequence of these libraries,
extending an existing codebase to leverage network ser-
vices is relatively simple as we illustrate with the appli-
cations we describe later in this section.

Our implemented APIs allow any application to in-
voke any service for its host – even for ports bound other
applications. While the Resolution Server stops mali-
cious end hosts from interfering with the traffic of other
end hosts, it cannot detect malicious processes interfer-
ing with other processes on the same end host. Longer
term, we expect that OS support for the protocol will cen-
tralize netcall requests through a single, privileged pro-
cess. Applications, rather than communicating directly
with the resolution server, will instead submit their INIT
request to the OS, who will either reject the request or
accept it and forward it to the resolution server, based
on (1) the port numbers bound to the requesting process,

and (2) the privileges of the requesting process.

6.3 Applications and Services

We modified three applications to invoke network ser-
vices through netcalls: (i) an Apache webserver that
invokes in-network filtering services for overload pro-
tection, (ii) a web client that invokes in-network com-
pression services (“WAN optimizers”) for reduced band-
width consumption and latency and, (iii) the Android
OS WiFi management interface that invokes in-network
IDS for malware protection. In implementing these, we
aimed to answer two main questions. First, do the netcall
abstractions allow clients to express requests for a broad
range of services? Second, are such services useful to
end applications? We believe our experience with these
services answers both in the affirmative.

DDoS Defense. The first application we developed is a
webserver that invokes firewall services in remote net-
works when overloaded. We implement this service by
extending an existing firewall implementation to allow
clients to add new rules with a CONFIG request. Our
netcall client is an Apache webserver that we modified
to request filtering using network calls. For this, we ex-
tend the existing mod qos [5] module in Apache, which
detects overload and restricts access to the webserver
based on usage patterns, redirecting troubling hosts/pre-
fixes to a ‘service overloaded’ web page. We augmented
mod qos in 97 LOC to invoke firewalling close to the
offending hosts’ networks to prevent DDoS. Our integra-
tion with mod qos demonstrates how application-layer
context can beneficially inform network behavior.

Ideally, we would test our application by deploying
resolution servers and services at every AS on the In-
ternet; since we cannot do this in practice, we instead
leverage EC2 as follows. We install our modified web-
server along with its local firewall and resolution server
in a testbed in our local environment. We then emu-
late the wide-area Internet topology over EC2 by having
each EC2 node serve as a ‘surrogate AS’, installing soft-
ware switches, firewalls and resolution servers at each.
We then deployed web clients on 20 EC2 nodes; these
clients serve as attackers and send unwanted traffic to our
modified webserver. Figure 6 shows a time sequence of
aggregate malicious traffic sent, malicious traffic at the
switch in the web server’s location, and malicious traf-
fic reaching the webserver itself 3. At 25 seconds, the
now-overloaded web server invokes the firewall. At time
45 seconds, the web server invokes firewalls in remote
networks. We see that neither the webserver nor its lo-
cal firewall is ever overloaded, as firewalls deeper in the

3Obviously the request rates shown are not enough to overload a
web server: we artificially set the bandwidth cap in mod qos to be
very low to avoid flagging the attention of network administrators for
launching a real DDoS attack!
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Fig. 6: The webserver reacts to a DDoS attack by invok-
ing network firewalls.

network drop malicious traffic before it reaches the web
server’s site.

Traffic Compression. Enterprise networks today com-
monly deploy WAN optimization appliances that com-
press traffic to minimize bandwidth costs. WAN opti-
mization requires that both the sending and receiving net-
works deploy appliances that compress/decompress traf-
fic as needed and hence, today, such compression is typi-
cally limited to communication between the different ge-
ographic sites of a single enterprise. With netcalls’ inter-
domain discovery capability, clients can instead invoke
WAN optimization services in any other network they
communicate with. We modified an existing command-
line web client to request compression whenever the user
flags a particular request as a ‘large file’ download – e.g.
downloading ISOs, video streams, etc. In parallel with
the start of the file transfer, the web client issues an INIT
request for an end-to-end service that compresses and de-
compresses traffic. This change required only 25 LOC.
Our traffic measurements showed that downloading from
another network which also deployed compression could
reduce bandwidth for the connection by on average 27%.

We also investigated the benefits of invoking com-
pression persistently to commonly contacted destina-
tions. Running an enterprise trace through our testbed,
we found that, for this enterprise, enabling WAN opti-
mization to and from the ten most commonly contacted
external ASes reduced the enterprise’s total bandwidth
utilization by 21%. Invoking compression to and from
100% of external networks would reduce bandwidth by
27% – hence, even partial deployment can provide sub-
stantial benefits for this service.

Android Security. Cell provider data networks pro-
tect smartphones by filtering malicious traffic, but typical
WiFi networks offer no such protection. We designed
a netcall-enabled IDS targeted towards Android smart-
phones, and modified the Android WiFi interface to pref-
erentially connect to networks that deployed this service.
Smartphones who invoke the service not only receive tra-
ditional firewalling and IDS, but a set of Android-specific
filters for real malware [2].

Upon connecting to a new WiFi network – i.e., one

Fig. 7: An end host security suite on the Android device
warns users when a security service is unavailable.

not secured by their service provider – the smartphone
attempts to enable security features if available. During
this process, the security application maintains network
connectivity but bans all other applications from con-
necting to the network.To establish trust between the user
and service, the service interface includes a validate

function, under which the service instance must present
a certificate signed by a trusted authority. We imagine
trusted authorities to be either the user’s service provider
(e.g. T-Mobile, AT&T) or a dedicated security provider
(e.g. Norton, McAffee). If the security service is un-
available, the WiFi interface (shown in Fig. 7) prompts
the user asking whether to remain on 4G secure service
from their provider, connect to the insecure network and
launch a local anti-virus, or try to find another hotspot
which does provide security features.

To test our security service with real malware, we
create a sandboxed deployment with just our Android
client, the Android IDS, a resolution server, and a sand-
box server that spoofs traffic from the Internet to the An-
droid client and deny malware any access to the public
Internet. In building our Mobile IDS, we created 170
new rules to detect 23 classes of malware; when running
malware software within our testbed, our rules caught 11
out of 11 malware attacks we deployed in our sandbox.
It is possible for the Android phone to perform filtering
on its own, obviating the need for any in network func-
tionality at all; however, offloading this filtering work to
the network saves battery life. In our experiments on the
device without malware, four hours of usage drained bat-
tery life to 56%, but while running a local antivirus, four
hours of usage drained battery life to 49%. Our mod-
ifications to the Android WiFi service to check service
availability, warn the user and startup antivirus included
124 LOC.
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7 Evaluation
We now evaluate our netcalls design for request latency,
control plane scalability, service stability, and service
availability.

7.1 Latency

Setup latency impacts how service designers can make
use of INIT Requests - if the setup latency is high relative
to the duration of their intended use, they are unlikely to
invoke service processing.

To measure expected latency values, we used a Res-
olution Server deployment on PlanetLab, having each
of 138 PlanetLab nodes serve as surrogate servers for
33,508 ASNs. We assigned each AS a surrogate server
with the following algorithm: (1) we assigned the net-
works that hosted a PlanetLab node the node that they
hosted; (2) we assigned networks for which we had
router IP addresses [13] the node with the lowest RTT
to their address space; (3) we assigned each remaining
network the node serving a majority of its peers. Com-
plicating server assignment is the fact that a single res-
olution server may surrogate for multiple networks; to
avoid co-located networks querying each other, we as-
signed each network a secondary server as well. We then
had clients at each site query their local resolution server
with INIT requests of each type of placement pattern,
such that none of the requests resolved to the local net-
work. We measured the end-to-end latency of each re-
quest from the client. Fig. 8 shows the observed latencies
for each type of query.

How long does it take to perform an INIT request across
the wide area? In the SINGLE case, the median query
took 334 milliseconds, and the 90th percentile took 906
milliseconds. These values are closely followed by the
PERIM and PATH cases, with median query times of 347
and 374 ms respectively. Overall, the wide area latency
(from Resolution Server to Resolution Server) dominates
the setup latency - end to end latency for a single request
requires slightly more than 2 RTTs.

At what granularity can application developers in-
voke services without suffering a serious performance
penalty? A service setup time of 2-3 round-trip times
is negligible overhead for setting up persistent services

(e.g. firewalls), services for long-lived connections (e.g.
acceleration for a large file transfer), or frequently used
services (e.g. invoking a proxy on web browser startup
and then proxying all requests to Google). However,
for short-lived flows of only a few round trip times, the
setup penalty will noticeably impact performance; thus
netcalls are not appropriate for this use case.

7.2 Scalability

In this section, we consider the scalability of the netcalls
API and whether or not it is feasible for a network to
handle INIT requests for a large number of clients. It is
impossible to evaluate what we expect to be ‘typical’ us-
age patterns before netcalls are deployed; hence we fo-
cus here only on upper bounds for the number of INIT
requests per second and storage requirements for SRRs.
We derive our bounds from a network dataset from a very
large enterprise of over 100,000 hosts.
How large are the state requirements for a RISP’s resolu-
tion server(s)? As an upper bound on state, we consider
a model where every host initializes a service for every
connection it participates in. As mentioned in the pre-
vious section, we expect typical service use to be much
less frequent; none of the services we designed depend
on per-connection service initialization. In a trace from a
week’s worth of connections in the large enterprise, at an
average point in time there were 108,430 active connec-
tions; this would lead to 36.2 MB of SRR state. The peak
number of active connections over the course of the week
was 240,836; this would lead to 80.4MB of SRR state: a
trivial amount of data to store for 100,000 clients.
How many requests per second must a RISP’s resolution
server(s) be able to handle? Looking at connection load,
we once again look for an upper bound, assuming that
clients send an INIT request for every TCP session they
start (even though INIT requests in practice are likely to
be much less frequent). Given an average of 108,430 ac-
tive connections and an average TCP session length of 60
sec, the average rate of requests would be around 1,800
connections/sec. At peak hours, with an average num-
ber of active connections at 270,836, the rate of requests
would be about 4,000 connections/sec.

This request load would be easily accommodated by a
small number of servers (<10), particularly in light of re-
cent results on scaling connection processing[26]. Nev-
ertheless, ISPs can set policies for the number of requests
they will accept per client or the granularity at which they
will allow INIT requests, hence, ISPs can to some extent
control the amount of state and requests they accept.

7.3 Stability

If traffic for a particular service is rerouted away from
its service-performing AS due to BGP updates, the client
must re-initialize the service. To investigate how often
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Fig. 9: Fraction of AS paths over time experiencing ser-
vice failure.

such a scenario occurs, we used routing update logs from
the RouteViews [6] project. We created an imaginary
AS as a customer of ASes 7018 (AT&T), 3356 (Level
3), and 31500 (a small ISP) and constructed its routing
table using default shortest AS path preferences. Then,
for each prefix, we selected an AS randomly and labeled
it a ‘service-performing network’. Starting at Midnight,
January 10, 2010, we monitored updates to the imaginary
ASes routing table and monitored when updates routed
away from service-performing ASes.

How often does a path change remove a service per-
forming path from the route to a prefix? In Figure 9,
we show the cumulative fraction of paths which have
experienced change over 24 hours. While 8% of paths
experience change within 24 hours, only 5% of paths
experience change that removes its service-performing
AS from the path. Within the first hour, less than half a
percent of paths lose their service AS. If the imaginary
AS prefers paths that route through the service AS over
shortest paths only 3% of paths experience change that
loses the service AS; even if one service provider with-
draws a path through the service-providing AS, another
provider’s path may still traverse the same AS.

What fraction of connections will experience service in-
terruption mid-flow? Service interruption only impacts
the client if it occurs during a flow on a path in use. Typ-
ical connections are short, and to popular prefixes (which
studies have shown to have relatively stable paths [29]).
To capture the impact of path instability on connections,
we combined our BGP trace with a real enterprise trace,
assuming that the enterprise was a customer of our imag-
inary AS and that the traces occurred over the same week
long period. Over this period, the hosts in the enterprise
contacted over 200 ASes, but we observed only one con-
nection that would have been disrupted by a BGP update.
This leads to to believe that from the clients perspective,
BGP service interruptions will be negligible.

7.4 Availability

The netcalls architecture expands the reach of deployed
services by allowing users to invoke interdomain ser-
vices. We evaluated this benefit in simulation, using an
AS-level routing and topology simulator modeled after
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those used by other groups [18, 21, 35]. Our simula-
tor modeled the AS graph from January 20, 2010, with
33,508 AS nodes and their peering relationships [4, 6].
For each simulation, we randomly annotated a fraction
of the ASes as ‘service-adopting’ ASes, indicating that
the AS supported the requested service; we biased this
annotation such that large ASes were twice as likely as
the average AS to support the service. We then randomly
selected 10k random (Source, Destination) AS pairs and
and checked whether the forwarding path(s)4 between
them contained ‘service’ ASes appropriate to fulfill a ser-
vice request under a number of constraints.
How often is a service available between a random pair
of ASes? In Figure 10, we show the fraction of AS pairs
where the networks on the default path between them
support the service: the y-axis shows the fraction of AS
pairs with a path that provides access to the service, and
the x-axis shows the fraction of ASes deploying the de-
sired service interface. About 70% of AS pairs have at
least one service-performing AS on a path between them,
even when only 10% of networks adopt the service: a 7×
improvement in service availability from extending ser-
vice invocation across interdomain boundaries. As could
be expected, service availability drops for more demand-
ing service types. However, all service types except for
‘Hop by Hop’ services (at every AS along the path) are
available for almost 100% of AS pairs once the service
is deployed in only 50% of networks.
When the requesting AS can only invoke services with
its service peers, how often is a service available? Be-

4If the source AS was multihomed, we checked all its paths.
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cause we expect networks to only invoke services with
peers, just because a service is deployed doesn’t mean
that a network will be able to invoke the service (and
hence Fig. 10 is an overestimate). In Figure 11, we show
how often a service is available once along the forward-
ing path between source and destination, at an AS which
the source AS peers with. When the requesting AS can
only invoke services with its physical (Direct) peers, ser-
vice availability is roughly 35% when 10% of ASes de-
ploy the service. When we assigned each requesting AS
5 additional ‘service peers’ (selected from Tier-1 ISPs),
availability improved such that about 45% of pairs could
invoke the service at 10% deployment. Hence, the ability
to invoke interdomain services improves service avail-
ability even when the requesting network can only invoke
services in a restricted number of external networks.

How do the multipath and brokering extensions proposed
in §4.3 improve availability? Returning to Figure 11:
our proposed extensions dramatically increase availabil-
ity. With both extensions in use at 10% deployment, al-
most 90% of AS pairs had access to the service, provid-
ing almost universal availability with only very limited
service deployment.

8 Related Work
Having sketched netcalls’ goals and approach, we briefly
contrast our work with related efforts.
Network services. Research has pursued the general vi-
sion for in-network services for decades now with sev-
eral pioneering proposals for specific new services [23,
15, 12]. We focus on the design of a general API rather
than a specific service. In this sense, we view our efforts
as complementary to this prior work.

Perhaps closer to our goals, is prior work on ar-
chitectural support for network services more gener-
ally [34, 27, 8]. These prior efforts were rooted in the as-
sumption that supporting rich in-network processing re-
quired a fundamentally different architecture and hence
designed solutions to replace the IP service model. In
contrast, our design efforts lead us to believe that our
goals can be well achieved by augmenting the existing
service model and see no need to replace IP. A further
distinction relative to Active Networks is our more con-
strained model of network services wherein operators
pre-install advanced functionality and expose to users the
ability to invoke (but not define!) these functions.
Middlebox services today. Some ISPs already expose
services to immediate customers [10]; the IETF MidCom
group [30] explores standards for communication with
local middleboxes. Our proposal complements these,
targeting users at scale across network domains in a gen-
eral manner. Traffic processing is also available through
overlay or cloud services [1, 3].
Middlebox-centric network architectures. Prior pro-

posals on integrating middleboxes into the broader ar-
chitecture focused on the naming implications of mid-
dleboxes, proposing that users explicitly address the spe-
cific middleboxes for their traffic to traverse [9, 33, 31].
These proposals resolve the tension of applying unso-
licited functionality to users’ traffic. But, they leave
unresolved how users discover these middleboxes, how
users reason about which middleboxes to select given
routing and topology conditions and the role of network
providers and their policies in offering and managing
middlebox-based services. netcalls tackles the above un-
resolved questions and, in so doing, proposes a differ-
ent approach. To reduce complexity for end users and
provide network operators with a stake in service selec-
tion, we argue that the appropriate abstraction is instead
to have users name the functionality itself and leave the
network to resolve how and where it is performed.

Typed Networking [25], recognizing that hosts may
want to avoid certain processing, envisions a ‘negotia-
tion’ between middleboxes and hosts where boxes on the
forwarding path signal the user, that can then opt out of
processing. They do not consider an opt-in capability
and hence issues of service discovery and availability.
Network evolution. Recent efforts [24] define open
APIs between switches and operators within a single do-
main; they do not discuss the APIs a network exposes
externally–to end users and to other networks. Our work
likewise complements recent research on programmable
routers [16, 17, 22] by showing how the capabilities they
enable can be exposed to users.
Service Discovery is a common component of many sys-
tems. Most of these however operate in contexts, with
goals or technology different from ours; e.g. targeting
ISP-assisted application-layer service composition [28],
wide-area discovery using IP multicast [7], using new
naming infrastructures [32], etc.

9 Conclusion
We presented netcalls, an API by which user applications
invoke advanced processing functions from the network.
We presented three end host applications that invoke net-
calls to defend against DDoS, compress high-bandwidth
connections, and secure against malware.

We do not by any means expect that netcalls is the fi-
nal say in discussion of how to best integrate advanced
network processing into the network architecture. How-
ever, we believe our contribution - a vision for high-level,
programmable interfaces that provide access to federated
services across the entire Internet - moves the space for-
ward towards a practical design that is easy to use from
the perspective of application developers, while provid-
ing network providers a stake in selection, deployment,
and profit from advanced services.
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