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Abstract

We present CCAnalyzer, a novel classifier for deployed In-
ternet congestion control algorithms (CCAs) which is more
accurate, more generalizable, and more human-interpretable
than prior classifiers. CCAnalyzer requires no knowledge of
the underlying CCA algorithms, and it can identify when
a CCA is novel – i.e. not in the training set. Furthermore,
CCAnalyzer can cluster together servers it believes use the
same novel/unknown algorithm. CCAnalyzer correctly iden-
tifies all 15 of the default Internet CCAs deployed with Linux,
including BBRv1, which no existing classifier can do. Finally,
CCAnalyzer can classify server CCAs while being as efficient
or better than prior approaches in terms of bytes transferred
and runtime. We conduct a measurement study using CC-
Analyzer measuring the CCA for 5000+ websites. We find
widespread deployment of BBRv1, and demonstrate how our
clustering technique can detect deployments of new algo-
rithms as it discovers BBRv3 although BBRv3 is not in its
training set.

1 Introduction
There has been a growing shift in the Internet’s transport

layer including an explosion of novel congestion control algo-
rithm (CCA) proposals [10, 18–20, 52–54], many of which are
already deployed or being considered and tested for deploy-
ment in the Internet by content providers. Examples include
novel versions of BBR deployed by Google [17], Copa de-
ployment by Facebook [25], and FastTCP deployment by
Akamai [9, 40].1

With the growing diversity in CCA proposals and po-
tential deployments, we have an ever-growing need to un-
derstand what CCAs are currently deployed in the Internet
today. Assumptions about what CCAs are widely deployed
underlie decisions about how to size buffers in routers [26]
(proportional to 1√

𝑛
, if everyone is deploying NewReno [30]);

whether or not routers need multiple queues [15] (to protect
low-latency traffic from buffer filling traffic, if both classes
of CCAs are deployed); and how to test new Internet services
to ensure that they do not starve legacy traffic [28, 50, 51]
(if Reno is no longer widely used, perhaps we do not need
to test new CCAs for Reno-friendliness).

1Although our measurement study at the conclusion of this paper suggests
that Akamai has largely dropped FastTCP in favor of BBR.
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Figure 1: Time series of queue occupancy for four
CCAs (from top, left to right: New Reno, BBR, Cubic,
and BIC). Each CCA has a visually distinct queue occu-
pancy behavior.

The desire to understand CCA deployment motivated the
development of CCA classifiers starting with TBIT in 2001
[27, 40, 42, 46, 56]. Most of these tools focus on estimating the
CCA’s congestion window (CWND) by requesting a bulk data
transfer from the server and then observing the transfer’s re-
action to dropping and delaying packet acknowledgments or
to modulating the available bandwidth. Unfortunately, state-
of-the-art CCA classifiers using these techniques, e.g., Gor-
don [40] and Inspector Gadget [27], have several limitations
that prevent them from providing a truly comprehensive
picture of CCA deployments. We discuss prior approaches
and their limitations in detail in §2.

We seek to develop a CCA classifier with several desirable
properties:

Complete support for well-known CCAs: A CCA clas-
sifier should be able to identify known CCAs with minimal
errors. Supporting identification of the 15 built-in wide area
CCAs in Linux2 is especially desirable.

Efficient and nearly-passive: Network measurements
should aim to be as lightweight and minimally burdensome
as possible on non-cooperating parties. Heavyweight tech-
niques make it difficult to perform large-scale measurement
studies and can lead to measurement tools being ‘blocklisted’
by services.

2In fairness, we exclude the lp and dctcp algorithms because these algo-
rithms require in-network support which is not available in the wide area.
All other prior work also excludes these algorithms.
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Discover new CCAs: Open-set classification is the ability
for a classifier to classify that a testing sample is not in
the training set [39]. In the current period of significant
experimentation in the congestion control space, a CCA
classifier should be able to identify if a website is using a
known or unknown CCA. Furthermore, to identify truly
novel CCAs, the classifier should be able to determine which
servers using unknown CCAs all appear to be using the same
algorithm.

Interpretable results: A CCA classifier should be ’inter-
pretable’ [35]. That is, as human experts, we should be able
to understand why our algorithm classifies two web servers
as using the same CCA. This allows for evaluation and val-
idation of results as well as aiding in the discovery of new
CCAs.

In this paper, we present CCAnalyzer, a newCCA classifier.
CCAnalyzer can correctly classify all built-in Linux CCAs.
It is 40x faster than Gordon, and unlike Inspector Gadget,
CCAnalyzer can efficiently identify if a group of servers are
all using the same unknown algorithm. CCAnalyzer achieves
this by taking a radically different approach to classification
than prior work. Both Gordon and Inspector Gadget use
decision trees hand-crafted or trained on observed CWND val-
ues or gradients; they inflate round-trip-times (RTTs) and/or
introduce timeouts to precisely measure the CWND at each
point in time. In contrast, CCAnalyzer starts from a simple
observation: if we visually observe the occupancy of pack-
ets in a bottleneck queue over time, even a human expert
can identify the connection’s CCA. In Figure 1, we present
the queue occupancy of the bottleneck link from real TCP
connections; the familiar Reno ‘sawtooth’ is visible for Reno
while other CCAs have their own patterns of rising and
falling queue size. Because CCAnalyzer does not interfere
with a connection’s normal behavior (beyond introducing
a low-capacity link to force a bottleneck) we describe the
approach as nearly-passive and argue that it is minimally
intrusive for operators.
Rather than trying to collect CWND traces, CCAnalyzer

works by measuring a connection’s queue occupancy over
time and uses this time series data as input to a classic algo-
rithm for measuring the distance between two time series
called Dynamic Time Warping (DTW) [13]. DTW is used in
a variety of applications requiring signal comparison, such
as voice recognition and shape detection. DTW compares
two signals for similarities in shape and magnitude while
accounting for distortions such as stretching or noise – this
latter accounting is especially valuable since we expect to see
such distortions in network traces due to variances in RTT,
jitter, random packet loss, etc. CCAnalyzer uses a 1-Nearest
Neighbor(1NN) classifier with DTW as the distance measure
and labeled time-series as the training set. A testing trace is

given the label as the closest training sample. CCAnalyzer
collects 4 queue occupancy traces for each website, and votes
across the labels of those traces to give a website a final label.
We describe the our methodology in more detail in §3.

We find that, in addition to beingmore efficient and broadly
applicable than prior approaches, CCAnalyzer offers addi-
tional advantages. Collecting queue occupancy traces as well
as the ability to compare these traces to one another using
the ’distance’ measure provided by DTW allows us to visu-
alize and validate results. By looking at the website traces
and their closest training sample we can see when and why
the classification may have been incorrect for identifying
possible errors. In addition, using a matrix of all the pairwise
distances between a set of traces, we can cluster traces and
identify the deployment of new CCAs outside of our training
set. We demonstrate these additional advantages in §4 and
§5.
We use CCAnalyzer to conduct a measurement study of

Top 10K websites ranked by Google Chrome’s UX Report
(CrUX) [57] and find the following:
1. 56% of the websites we are able to measure (5000+) are

classified as BBRv1, while only 6.9% were classified as CU-
BIC, suggesting there is an almost complete shift towards
BBR being the most widely-deployed CCA.

2. Clustering queue occupancy traces makes our results in-
terpretable and straightforward to validate. It allows us
to fix when a website’s traces are marked as unknown
when they are actually known and using a CCA in the
training set.

3. CCAnalyzer was able to discover Google’s deployment
of BBRv3, even though we do not have a BBRv3 imple-
mentation in our testbed and did not train CCAnalyzer
on BBRv3 traffic.

4. We see some deployment of other unknowns CCAs.
The rest of this paper is organized as follows. In §2 we

discuss prior work in classifying CCAs. In §3, we present the
CCAnalyzer methodology. In §4 we evaluate CCAnalyzer’s
accuracy, speed, and resource utilization. In §5 we provide a
brief measurement study focusing on (a) a 2023 update on
CCAs used by web servers and (b) the results of clustering
unknown CCAs. In §6 we conclude and highlight future
work.

2 Prior Work and Limitations
There have been several attempts at CCA classification

over the past two decades beginning with TBIT [27, 40, 42,
46, 56]. Of recent classifiers, we focus on the two state-of-the-
art algorithms: Gordon [40] (2019) and Inspector Gadget[27]
(2020). Table 1 highlights the limitations of these classifiers.

Gordon: Gordon inspired a renaissance in CCA classifi-
cation algorithms after two decades of relative dormancy.
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Gordon [40] ✗ (10/15) ✗ ✓ ✗

IG [27] ✓ (15/15) ✗ ✗ ✗

CCAnalyzer ✓ (15/15) ✓ ✓ ✓

Table 1: CCA classifier desirable properties

The authors insightfully noted the deployment of numer-
ous novel algorithms (at the time, BBRv1 was beginning to
‘take off’ [40]) and the need to measure the changing CCA
landscape due to the impact of CCAs on a wide range of In-
ternet issues from infrastructure design to network fairness.
In addition to developing the Gordon classification tool, the
paper also provides the widest measurement study of CCA
deployment in the post-BBR era; significantly, the authors
noted the surprisingly rapid growth in the deployment of
BBRv1, which 17.75% of servers they measured used at the
time.
The Gordon classifier works by creating a bottleneck be-

tween the web server and the client, introducing various
network events including packet losses and changes in band-
width and delay in the hopes of exactly measuring the CWND.
Generating these CWND traces comes at a high cost: Gor-
don requires incremental probing, RTT-by-RTT, starting
and restarting connections with a web server many times—
requiring up to 800MB of data transferred to successfully
perform a classification. Anecdotally, we observe in our own
evaluation that more servers reject connections from the
Gordon tool than reported in 2019; conversations with one
of the Gordon authors [1] lead to the hypothesis that Gordon
is being blocked or rate-limited due to these overheads. As
we will show in §4.2, CCAnalyzer trace collection transfers
85% fewer bytes, and is 40x faster than Gordon.

After collecting CWND traces, Gordon, uses a hard-coded de-
cision tree to classify these traces. Because some algorithms
are not distinguishable based on the parameters in this deci-
sion tree, Gordon cannot tell the difference between Com-
pound TCP/Illinois, Vegas/Veno, and New Reno/Highspeed
(HSTCP) and instead groups these into the same category
because they all identical.

Consequently, Gordon requires detailed knowledge about
how each CCA works to support a new CCA. For example,
it needed a special-cased test to support BBR. While Gordon
can mark a CWND trace as ‘unknown’ it cannot group web
servers as using the same unknown CCAwithout running ad-
ditional hand-crafted tests. As we will show in §4.1, although
Gordon has good accuracy for supported CCAs, its lack of
support for many CCAs and it’s inefficiency and inability to

natively discover new novel CCAs makes it challenging to
use with a constantly evolving transport layer.

Inspector Gadget (IG): Published in 2020, IG’s authors
developed the tool to fingerprint a web server’s networking
stacks, including its CCA. In their results, they notably found
that Cubic was the dominant CCA followed by BBR in North
America, but also saw most servers from other regions were
still using Reno. Similarly to Gordon, IG also tries to carefully
inject network events including timeouts and changes in
delay to generate CWND traces. To generate these traces, IG
addresses issues with prior work’s CWND estimations with
some optimizations. Rather than classifying raw CWND traces,
IG extracts a vector capturing the CWND as a series of offsets,
using a decision tree classifier on these vectors.
IG’s published code [7] includes a user-level TCP stack

and modifications to a TLS library to manipulate packets in a
HTTPS connection, which we find does not work in practice.
We ultimately had to re-implement IG to the best of our
ability. As we will show in §4.1 we are able to reproduce good
accuracy with our re-implementation. We find this technique
is more efficient and accurate than Gordon. However, we
highlight two limitations of IG.

First, we find that IG does not make it straightforward to
classify a CCA as unknown or discover new CCAs. Given the
decision tree classifier, we can only mark a trace as a known
label. Second, we find that we need to carefully account
for TCP stack optimizations at the sender like F-RTO [47]
that impact how a TCP flow will respond to losses that are
independent of CCA behavior. These special cases are also
challenges in prior work that tries to collect CWND traces [56].
Furthermore, because of IG and Gordon’s significant ac-

tive manipulation of ACK timings and packet drops, their
extensibility to other protocols (e.g. QUIC, HTTPS, etc.) or
applications (e.g. video) is severely limited relative to a more
passive measurement approach.

Other classifiers: The literature prior to Gordon and IG in-
cludes other influential classifiers such as TBIT [42], CAAI [56],
and DeePCCI [46], however, all of these approaches are su-
perseded in both accuracy and coverage by Gordon and IG,
therefore we focus our comparisons on these to prior ap-
proaches only.
Given the limitations of prior work our goal is the fol-

lowing: We want to design a new CCA classifier with
higher coverage of known CCAs, better efficiency, bet-
ter passivity, and open set: able to discover new CCAs
without considerable effort. In the following sections we
discuss how CCAnalyzer achieves these goals.

3



SIGCOMM’24, August 4-8, 2024, Sydney, Australia Paper #681

service at k Mbps

delay by j milliseconds

Third-Party
Servers Client

BESS Node

NATInternet

Figure 2: Testbed to issue requests to third-party
servers and identify their CCAs.

3 Methodology
We propose a new algorithm, CCAnalyzer, for identifying

CCAs in an efficient and nearly-passive way. CCAnalyzer
takes a radically different approach to prior CWND estimation
techniques by relying on bottleneck queue occupancy traces.
In this section, we describe how we can frame the CCA clas-
sification problem as a time series classification problem and
how this enables CCAnalyzer to achieve the goals outlined
in previous sections.
3.1 Key Insight: Observing Queue Occupancy
A key issue with prior techniques is that they require

brittle and resource-intensive flow manipulation to directly
estimate the CWND and then perform classification. Our key
insight is that we need not try to force network events to
force a CCA to behave in some expected way, but rather we
can observe CCAs in their natural habitat: at the bottleneck
queue.

In order to observe the bottleneck queue occupancy when
downloading data from a server, we insert our own switch
with a deliberately slowed egress link between the server
and the client using a testbed as shown in Fig. 2. Because the
switch processes incoming packets at a speed much slower
than upstream links, it becomes the connection bottleneck.
The switch uses a queue of a chosen size and we configure it
to record when packets are enqueued, dequeued, or dropped.
We implement this switch using the BESS software switch [3],
and the client issues pipelined HTTP requests to third party
servers using h2load [6] to utilize the available bandwidth.
On page 1, Fig. 1 shows real example bottleneck queue

occupancy traces collected from our testbed. A human ob-
server can clearly see the classic ‘TCP sawtooth’ of Reno,
𝑥3 curves of Cubic and even periodic bandwidth probes of
BBR in these traces. CCAs will cycle through their behavior:
increasing their sending rates to use the available bandwidth
and react to losses (depending on their design) that occur
naturally if they fill the bottleneck queue. We posit that if the
patterns observed by two different flows in the bottleneck
queue are equivalent, then the CCAs are equivalent.
CCAnalyzer’s simple inference from queue occupancy

traces achieves the goals outlined in the previous section.
CCAnalyzer has higher coverage of known CCAs and is
more general than prior work. We can support classifying a

usps.com
cubic-training

(a) Euclidean distance = 2.47

usps.com
cubic-training

(b) DTW distance = 0.76

Figure 3: Queue occupancy distance calculation for
samples from usps.com to closest sample from train-
ing set. DTW allows a flexible one-to-many mapping
between similar points, while euclidean is a one-to-one
mapping to points at the exact same time.

CCA, if we can collect queue occupancy traces for that CCA.
CCAs may be loss-based, may be latency sensitive, or have
other characteristics and CCAnalyzer can still classify them
without needing any special tests.

CCAnalyzer is nearly-passive: it does not need to force
timeouts, radically modulate bandwidth, implement numer-
ous serial connections, etc.. Although CCAnalyzer does nor-
malize round-trip times and bottleneck bandwidth, to the
server under test it appears as a normal TCP connection with
no anomalous behaviors.

Lastly, CCAnalyzer is also open-set. Because we can com-
pare queue occupancy traces, we can determine if a trace
does not match anything in the training set. Further, we can
cluster like traces and detect if multiple servers are deploy-
ing the same CCA that is not in the training set. No prior
tool can automatically cluster servers using like, novel CCAs
and we believe that this trait of CCAnalyzer is crucial to
measuring and modeling a continuously-evolving Internet.
3.2 A Time Series Classification Approach
CCAnalyzer compares two queue occupancy traces to

each other using a well-known algorithm called Dynamic
Time Warping (DTW)[13], which takes in two time series
traces and returns a ‘distance’ measurement quantifying how
similar the two traces are. DTW is traditionally used in pat-
tern matching tasks like automatic speech recognition and
speaker identification; just as a speaker will have a signa-
ture pitch and cadence, congestion control algorithms each
have a unique typical queue occupancy and rate of change.
These types of problems are known as ‘time series classifi-
cation’ problems, and despite 40 years of research since the
invention of DTW, it remains a widely used general-purpose
algorithm for this class of challenges [11].

To understand DTW, we first consider a naïve approach to
compare two traces using Euclidean distance (ED). Consider
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two queue occupancy traces, 𝑋 = (𝑥1...𝑥𝑛) and 𝑌 = (𝑦1...𝑦𝑛),
where 𝑥𝑖 is the queue occupancy at time 𝑖 in trace 𝑋 and
where X and Y are 𝑛 time steps long. We can compute ED be-
tween these two traces by computing the sum of the squared
difference between each element 𝑥𝑖 and 𝑦𝑖 .

Fig. 3 shows why this one-to-one mapping approach fails
for most network traces. Traces can dilate and contract rel-
ative to time on the real Internet. For example: a host may
stall during the trace, sending a packet a few ms later than
expected; an in-network queue may fill up with background
traffic, temporarily increasing the RTT; a long-running flow
in the background may end, suddenly reducing the RTT.
These effects can cause two traces from the same CCA to
appear stretched and squeezed relative to one another.

DTW accounts for this stretching and squeezing by allow-
ing a one-to-many mapping: a given index from each trace
can map to one or more indices in the other trace. DTW finds
the optimal point-to-point mapping between the two traces
to minimize the sum of the distances between all their points
with some constraints. Fig. 3b shows how this results in DTW
measuring a smaller distance than ED for same-CCA traces.
We describe the formal definition of DTW in Appendix §B.
There are many more well-studied aspects and applications
of DTW [11, 13, 31, 33, 43, 45] but we do not require their
discussion here to understand CCAnalyzer.
CCAnalyzer uses a one-nearest-neighbor classifier with

DTW as the distance measure (1NN-DTW), a commonly
used time series classification methodology [11]. Given a
website to classify, CCAnalyzer computes the DTWdistances
between the queue occupancy traces of all training samples
and the queue occupancy trace of the website. The website
is given the label of the closest training sample.
Given this approach, DTW allows us to classify if a time

series matches one within the training set, but how will we
determine if a CCA is not in the training set and should
be classified as unknown? We explore using a well-known
extension to our 1NN classifier called TNN where T is a dis-
tance threshold [39]. If the DTW distance between a website
trace and it’s closest label is higher than T, then the trace is
marked as unknown.
3.3 Parameter Tuning

CCAnalyzer observes a TCP connection’s natural behavior
as its CWND rises and falls, probing for bandwidth. However,
classifying CCAs based on this natural behavior requires that
we observe TCP connections in sufficient conditions that
they act distinguishably from one another. To be specific:

Wemust choose bottleneck bandwidth, RTT, and queue
size such that same-family CCAs exhibit different be-
havior (§3.3.2): This is most important for Reno-family
CCAs (Westwood, Highspeed, YeAH, etc.) which are all vari-
ants of each other. Many are designed to simply ‘act like

Reno’ in lowBDP environments and only exhibit their unique
growth and backoff behaviors at higher BDP environments.

We must observe connections for long enough that
each CCA goes through several ‘cycles’ of operation
(§3.3.3): DTW matches similar traces to each other, but
minor perturbations in the network environment (arrival/de-
parture of background flows, external packet loss) can make
traces appear dissimilarly. Having multiple iterations of the
CCA’s characteristic behavior allows DTW to self-correct for
brief abberations as the characteristic connection behavior
re-emerges after a few RTTs.

We need to identify when a trace is too far from its
nearest neighbors in the training set (§3.3.4): We would
expect servers using novel CCAs to produce a DTW dis-
tance which is ‘far’ from any training sample: but how far
is far enough to declare that a server is indeed using a new
algorithm?

Note that the above issues all somewhat depend on the
set of CCAs that the system is meant to classify. We take an
empirical approach to setting appropriate parameters to cor-
rectly distinguish CCAs which we describe in the following
sections. However, it is not unlikely that if the CCA land-
scape were to evolve dramatically with the deployment of
many new CCAs and the phasing out of many old ones, that
we would need to re-tune these parameters for CCAnalyzer
to remain effective in the future.
3.3.1 Experimental Setup The CCAnalyzer testbed is in-
stalled on Cloudlab servers inWisconsin, USA [21] (see Fig 2).
To generate ground truth data for evaluation, we collect
traces to servers installed on Amazon Web Services (AWS)
datacenters in Virginia and Microsoft Azure’s ‘East’ US dat-
acenter. We use the AWS-Virginia dataset as our training
data for CCAnalyzer and our Azure-East datasets for testing.
When measured using iperf[8], the total available band-
width between the CCAnalyzer testbed client and the AWS
machines is 500Mbps and between the testbed client and
Azure machines is 920Mbps.

Each server is configured as follows:
• Training Set (AWS-Virginia): Ubuntu 22.04.2, Linux ker-
nel version 5.19. RTT to testbed 22ms. 3 samples per
CCA.

• Testing Set (Azure-East): Ubuntu 20.04.6, Linux kernel
version 5.15. sRTT to testbed 24ms. 5 samples per CCA.

Training andTesting forCCAnalyzer: UsingAWS-Virginia
we generate training samples for 15 CCAs available in Linux.
We run iperf flows between a transmitting host located in
AWS Virginia and a receiving host in our testbed for 120s (as
we will discuss in §4.2 we need not use all 120s for accurate
training and only need 20s). To generate testing data, we set
up an HTTP (not HTTPS) Apache web server on Azure-East
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Figure 4: Accuracy mapping each
testing sample to closest training
sample per network setting.
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Figure 5: 10bw-130rtt setting: A BBR
trace is correctly labelled.
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Figure 6: 15bw-35rtt setting: A Reno
trace is incorrectly labelled as West-
wood due to similar queue occupancy.

with a 100MB file. We use wget to download the file to the
receiving host in our testbed for 60s.
3.3.2 Network ConfigurationMany CCAs, especially
Reno-family CCAs, are designed to behave similarly in low-
BDP environments. Hence, we need to identify network set-
tings in which these CCAs exhibit their distinguishing be-
havior. Our testbed enables us to emulate different network
conditions by varying the bottleneck bandwidth, round-trip
time, and the bottleneck queue size. We explore a few differ-
ent network settings to emulate with bandwidth of 5Mbps,
10Mbps, or 15Mbps; RTT is 35ms, 85ms, 130ms or 275ms;
and bottleneck queue sizes are set to approximately 1BDP.3
We choose to use relatively small bandwidth ranges because
we want to ensure that our queue is the bottleneck for the
connection; if queueing were to build up elsewhere in the
network we would not observe useful behavior in the queue
occupancy traces.
We run 1NN-DTW on our test dataset from Azure-East,

classifying each 60s trace as its ‘nearest’ training trace. Fig. 4
shows the accuracy of CCAnalyzer for these 12 network
settings for each testing set. Some settings work significantly
better than others. The most accurate 4 settings are when the
bandwidth is 5mbps or 10mbps, and when the RTT is 85ms
or 130ms: in these settings, simply mapping each trace to it’s
nearest training trace offers over 95% accuracy. Our ultimate
design relies on voting across multiple settings in order to
‘boost’ our accuracy to 100%, but we want each voter to be as
confident as possible: hence we restrict our measurements
in CCAnalyzer to the four most accurate settings.

To gain intuition as to why these settings work well while
others perform poorly, we manually inspect a few traces
which are classified correctly and others where traces are
classified incorrectly. This also highlights the interpretability
of our results.

3BESS requires the queue size to be a power of 2 so the actual queue size is
set to be a power of 2 closest to 1BDP.

Fig. 5 shows an example of where 1NN-DTW works well,
with a BBR testing sample and its closest training sample
which are nearly identical. More illuminating is how closely
the testing sample relates to the incorrect CCAs. Fig. 7 shows
all the distances between a BBR sample and all the training
samples in the 10bw-130rtt setting. All the BBR training
samples are closest to this testing sample, but other similar
CCAs that are also not loss-based, such as CDG and Vegas,
are the next closest. These algorithms all have relatively low
magnitude in their queue occupancy compared to, e.g., Reno
and Cubic variants.

Fig. 8 shows an example where 1NN-DTW does not work
well. This is an example of a scenario where Reno variants
behave similarly in our observations for a bad network set-
ting. Fig. 8 shows all the distances between a Reno sample
and all the training samples in the 15bw-35rtt setting where
it is misclassified: all the closest training samples are variants
of Reno including Westwood, and YeAH. In general, we find
that the most difficult CCAs to classify with CCAnalyzer are
all variants of Reno, due to their similar queue occupancy
patterns in low BDP environments. However, some settings
are very successful at distinguishing these algorithms – for
example, when HSTCP detects a high enough BDP it will
modify its 𝛼 and 𝛽 parameters such that it is distinguishable
from Reno [23].
3.3.3 Trace Length/DurationOne of our key goals with
CCAnalyzer is to reduce the overhead of probing relative to
prior approaches. At the same time, we need to observe CCAs
over a sufficient period of time such that they iterate through
multiple ‘cycles’ of their bandwidth probing mechanisms.
Consequently, we aim to identify the minimum duration we
should measure a network trace while still ensuring strong
accuracy. Fig 9 shows the accuracy from classifying flows
individually (without voting) with durations ranging from 10
to 50s. We see a modest dip in accuracy when we drop as low
as 10s. However, for traces from 20s-50s, we see relatively
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Figure 7: 10bw-130rtt: BBR trace cor-
rectly labelled. It is close to other
low-latency CCAs, such as Vegas and
CDG.
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Figure 8: 15bw-35rtt: Reno trace in-
correctly labelled as Westwood. It is
close to the ground truth (Reno) as
well as other Reno-family CCAs.

10 20 30 40 50
Flow Length (s)

0
15
30
45
60
75

Nu
m

be
r C

or
re

ct

10bw-130rtt-128q
10bw-85rtt-128q

5bw-130rtt-64q
5bw-85rtt-64q

Figure 9: Results from classifica-
tion for truncated traces in accu-
rate settings. Near perfect accuracy
is reached with as little as 20s flows.
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Figure 10: Distribution of distances between training
samples for 5bw-85rtt-64q accurate settings. The seper-
ation between the same CCA distribution and different
CCA distribution suggests we can set a distance thresh-
old to mark CCAs as unknown.

indistinguishable accuracy. Hence, we can use traces as short
as 20s with minimal impact to classification accuracy and
hence use this duration as our minimum trace length.
3.3.4 Classifying UnknownsOur final parameter tuning
step enables us to identify unknown or novel CCAs. This is
referred to as solving an ‘open-set’ classification problem
(a problem in which some of the data to be classified may
not match any of the labels in the training set) rather than
a ‘closed-set’ problem. In prior work, only Gordon [40] pro-
vides an open-set algorithm – all other algorithms in the
literature, including Inspector Gadget, are closed-set, mean-
ing that they will always erroneously identify novel CCAs
as some other existing algorithm in the training set.
CCAnalyzer’s mechanism for identifying novel CCAs re-

quires identifying some DTW distance threshold 𝑇 such
that if the nearest training sample to a trace is more than 𝑇
distance away according to DTW, we should mark it as un-
known. The algorithm for classifying with such a threshold,
called TNN [39], is otherwise identical to the 1NN algorithm
we described previously. Figure 10 provides intuition as to
why such a threshold is useful. Here, we plot a CDF of all
DTW distances between pairs of traces in our training data
in which the pairs use the same CCA or in which they repre-
sent different CCAs. The distribution of distances between

samples with the same CCA is tight – between roughly 1 and
15 – where pairs of different CCAs generally have a much
higher DTW distance between them. The key is to choose the
threshold 𝑇 smartly: if we set 𝑇 too high, we will mark true
unknowns with a known CCA (a false known) and if we set
𝑇 too low we will mark things that should have been labeled
as a known CCA as unknown (a false unknown). Between
the two classes of errors, we slightly prefer false unknowns
because we believe that the vast majority of servers on the
Internet do indeed use well-known CCAs. Consequently, we
choose a low𝑇 that will have some false unknowns. In §5 we
explore how we can further reduce false unknowns through
clustering.
Our challenge in setting 𝑇 is that we lack a way to rigor-

ously evaluate our choice of 𝑇 , since we lack ground-truth
knowledge about the deployment of novel CCAs on the Inter-
net, or even at what frequency novel CCAs are used. We can,
however, emulate the deployment of novel CCAs to guide
our search for a good value of 𝑇 .
We use our existing training data (AWS-Virgina) and run

classification on a new testing set (we use a server hosted in
the AWS-Ohio region) to simulate unknowns. To classify a
testing sample, we remove that testing sample’s CCA from
the training set. For example, when we want to classify a
Reno testing sample, we remove all Reno training samples
from the training set, and see if the Reno testing sample will
be correctly classified as unknown, or if it will be erroneously
given a known label. We repeat this process for all 15 CCAs,
and vary 𝑇 to balance false knowns and false unknowns.
Table 2 shows the results of these experiments with our
choice of 𝑇 for each setting. For example, in the 5bw-85rtt
setting, we choose the value that is the 95th percentile of the
"Same CCA" distribution in Fig. 10.

To evaluate howwell these values of𝑇 work, we repeat this
process with the Azure-East testing set. Figure 11 shows how
each CCA is classified when we remove that CCA’s training
samples; ideally the CCA should be classified as unknown.
Once we apply our voting scheme across all four settings
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Setting Quantile Distance Threshold

10bw-130rtt-128q 0.90 4.41
10bw-85rtt-128q 0.94 6.45
5bw-130rtt-64q 0.90 9.73
5bw-85rtt-64q 0.95 6.68

Table 2: Distance thresholds per setting.
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Figure 11: False positives when removing the training
samples with the correct label from the testing set and
seeing if we can correctly classify as unknown using a
distance thresholds in Table 2 per CCA. After voting
only CDG, BIC, and Scalable aremisclassified as known
labels.

(voting description in §3.4), only CDG, BIC, and Scalable are
misclassified with known labels – and are mislabeled with
similar CCAs (CDG is mapped to another low-latency CCA;
BIC and Scalable are mapped to each other).
Now that we have a mechanism to classify unknowns,

a new question arises: how do we tell which services are
all using the same unknown? The short answer is that we
can cluster unknown traces using pairwise DTW distance
measures – groups of traces with small distances between
them are likely to represent the same novel CCA. We return
to this clustering procedure in §5.1.
3.4 CCAnalyzer End-to-End

In order to classify servers, CCAnalyzer is configured with
a ground truth set of labeled queue occupancy traces for
15 CCAs for 4 network settings. Using TNN-DTW and the
testbed in Fig. 2, CCAnalyzer does the following to classify
a server:
1. Collect a queue occupancy trace for 20s (§3.3.3) for 4

network settings where the bandwidth is 5 or 10mbps and
RTT is 85 or 130ms (§3.3.2).

2. Compute the DTW distance between each queue occu-
pancy trace and all the training traces in the same network
setting.

3. Each queue occupancy trace is given the label of the CCA
that has the closest DTW distance.

4. If the distance is bigger than a distance threshold shown
in Table 2 (§3.3.4) the trace is marked as unknown).

5. To assign the final label, for a website there is a vote
between the 4 traces for the website. The final label for
the website is the majority label across the 4 traces. If
there is a tie between a known label and marking it as
unknown, the CCA is marked as the known label. Lastly,
if there is a tie between multiple CCAs, the final label
is from the trace with the minimal distance to its closes
training sample.

Finally, we use Agglomerative Clustering [41] to group un-
known traces based on their DTW distances to each other.
We use the distance threshold andmanual inspection of these
clusters to detect and identify proprietary, new, or unknown
algorithms. To the best of our knowledge, CCAnalyzer is the
only classifier which clusters unknown CCAs in any auto-
mated fashion. We explore the accuracy and efficiency of
this approach in the next section.

4 Evaluation
In §4.1 and §4.2, we measure the accuracy and efficiency of

CCAnalyzer and compare its performance with Gordon and
IG. We were unable to obtain an executable version from the
authors of IG, and ultimately had to re-implement it using the
same techniques described in the paper (we describe them in
§2) to the best of our ability. We find that CCAnalyzer is able
to achieve 100% accuracy using its voting scheme for all 15
built-in CCA algorithms in Linux. During trace collection, on
average, CCAnalyzer transmits 85% fewer bytes of the data
that Gordon needs to classify a website, and completes 40x
faster in terms of wall-clock time. CCAnalyzer achieves the
same accuracy and coverage as IG and better efficiency than
Gordon (§4.2), with the flexibility of open-set classification
(§5.2) and more interpretable results (§4.1).
4.1 Accuracy

Experimental setup: We evaluate Gordon and IG using
the same Azure-East web server we use to evaluate CCAn-
alyzer (§3.3.1). We point the Gordon client and IG client,
installed on a server in the CloudLab Utah testbed, to down-
load the same 100MB file from the Apache web server. We
classify each CCA 5 times for Gordon and CCAnalyzer and
30 times for IG (as is done in the their paper).
Both Gordon and CCAnalyzer use a voting scheme to

determine their final result. In the case of CCAnalyzer, we
generate measurements in four bandwidth/RTT/queue-size
settings, measure DTW distances to our training data for
each sample, and then vote across these four settings (§3.4).
In the case of Gordon, they run 15 trials and take a vote
across these 15 trials. To repeat classifying each CCA 5 times,
CCAnalyzer classifies 20 queue occupancy samples per CCA
and Gordon classifies 75 CWND trace samples per CCA.
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Figure 12: Gordon: Individual votes
for each CCA trace. Note that CDG,
NV, andHybla are correctlymarked
as unknown.
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Figure 13: CCAnalyzer: Individual
votes for each CCA trace.
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Figure 14: Comparison between CCAn-
alyzer, IG and Gordon classifying the
same servers.

We illustrate the accuracy of these individual votes in
Fig. 12 for Gordon and in Fig. 13 for CCAnalyzer. Stacked
bars show how many ‘votes’ went to each CCA. For CCAn-
alyzer, its individual votes are accurate with the exception
of marking known CCAs as unknown (we do favor false
unknowns vs. false knowns §3.3.4) and mislabelled Illinois
samples as YeAH (both are variants of Reno). For Gordon,
the errors are more varied, with several loss-based proto-
cols (BIC, Highspeed, and Illinois), identified unexpectedly
as BBR. While the results in the Gordon evaluation include
correct classifications for Westwood, the publicly released
code [5] for Gordon does not classify traces as Westwood,
and therefore does not support this algorithm. Notably, Gor-
don does correctly classify 3 algorithms it does not support
(CDG, Hybla, and NV) as unknown, demonstrating its ability
to classify some CCAs not in its known set as unknown.
In Fig. 24 we show the number of correct classifications

for IG, Gordon and CCAnalyzer. For both Gordon and CC-
Analyzer we report the results after applying their voting
schemes. CCAnalyzer achieves 100% accuracy across all
CCAs. The results for Gordon are more complex: CDG, Hy-
bla, and New Vegas (nv) are not supported by Gordon and
so we mark these as unsupported. Further, the published
code does not support Westwood so we also mark that as
unsupported. For the algorithms that Gordon does support,
it misclassifies all Highspeed samples, and is mostly accu-
rate for the other CCAs. IG is perfectly accurate for all but 1
CCA (CDG). While IG authors describe classifying a vector
of CWND offsets rather than raw CWND traces, we find that we
get better accuracy if we use the raw CWND traces.

Interpretability: There are many competing definitions
for what makes a classifier "interpretable" [35]. As human
experts we want to be able to understand our classifier’s
output: why are these two traces labelled as the same CCA?
This is one of the key advantages of CCAnalyzer over the
prior work: capturing the inherent cyclical nature of CCAs,
makes them more distinguishable. So much so, that not only
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Figure 15: Traces from CCAnalyzer and IG
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Figure 16: Efficiency comparison between CCAnalyzer
and Gordon classifying the same web server. Gordon’s
CWND estimator depends on the CCA so both bytes trans-
ferred and time is CCA dependent.

can a classifier find these distinguishable patterns, but so too
can a human observer. In Fig. 15, we compare CWND traces
from IG to queue occupancy traces from CCAnalyzer. While
the top graphs show traces for IG for Cubic and HTCP are
nearly identical, the traces for the same CCAs from CCAna-
lyzer are distinguishable. CCAnalyzer is able to achieve the
same or better accuracy as prior work, with the important
additional benefit of interpretable result.
4.2 Efficiency

Wehave twomeasures of efficiency: total bytes transferred
and wall-clock time. Using our testbed experiments, we mea-
sured that for CCAs supported by Gordon, CCAnalyzer re-
quires on average 15% fewer bytes to perform classification
and completes probing 40x faster in terms of wall-clock time.
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For all of these classifiers, classification is inexpensive and
done offline after collecting traces, so here we only consider
the efficiency of collecting the traces before classification.
We collect pcaps for all experiments and measure the aver-
age amount of bytes transferred between the web server and
the client for classifying each CCA. In addition, we measure
the time from the first packet sent from the client to the last
received from the web server.

Bytes transferred. Fig. 16a compares the number of bytes
transferred between CCAnalyzer and Gordon. Because Gor-
don waits to measure the reaction to packet loss, the time
and amount of data transferred to classify a webpage is heav-
ily dependent on the CCA. Because BBR does not respond to
individual packet losses, it transmits more data during the
measurement and requires a special test to classify. In con-
trast, CCAnalyzer’s classification is not as dependent on the
CCA, aside from CDGwhich doesn’t always manage to main-
tain full throughput, data transferred is independent of the
underlying algorithm. The mean number of bytes transferred
for CCAnalyzer over the 13 CCAs supported by Gordon is
68MB (total for collecting 4 traces) while for Gordon it is 456
MB (with a large std dev. of 186) since it heavily depends on
the CCA. IG only collects 1 trace for up to 50 RTTs without
any repetitions or restarts and at most transfers 2MB. How-
ever, since IG only emulates a single timeout, this efficiency
comes at the cost of failing to capture the cyclical nature of
CCA behavior, leading to poor interpretability of generated
traces (see Fig. 15).

Time comparison. Fig. 16b compares the amount of time
it takes to collect traces for CCAnalyzer and Gordon. CCAna-
lyzer only needs 20s per trace, and therefore including setup
overhead takes only a maximum of 30s per measurement
and is not dependent on the CCA. Since we collect 4 traces
for each CCA the total amount of time for trace collection
for CCAnalyzer is about 2 minutes. In contrast, Gordon’s
runtime heavily depends on the CCA with a max of 130 min-
utes and a minimum of 2.6 minutes to complete all of its 15
trials. IG takes at most 90s to collect traces.

5 CCA Measurement Study of Top 10K Websites
We conduct a measurement study using our comprehen-

sive tool and our testbed in Fig. 2. We have two goals here.
The primary goal is to demonstrate the effectiveness and
robustness of CCAnalyzer in classifying known CCAs and
detecting novel CCAs. We show how we can detect a new
CCA, BBRv3, with minimal effort. The second goal is to
take steps towards answering important questions about the
current state of CCA deployment in the Internet today, for
example: Is Cubic still the most dominant CCA? How has
the deployment of BBR evolved? Is Reno deprecated?

5.1 Methodology
The Google Chrome UX Report (CrUX) releases rank or-

dered lists of top websites, which is more accurate than
alternatives [44, 48]. We pull the websites from the Top 10K
bucket from the February 2023 dataset, which accounts for
70% of all Chrome page loads [44, 57]. While we believe that
this measurement study covers a large fraction of popular
websites, and we draw some important conclusions, we do
not claim to be a comprehensive Internet measurement study.
We leave a larger measurement study for future work (which
is more feasible with CCAnalyzer than prior work).

Both Gordon and Inspector Gadget had to search websites
for a webpage large enough to download to generate CWND
traces. Similarly, we need a web transfer between the client
and server for at least 20s. To achieve this goal, we use the
h2load [6] tool to send multiple parallel HTTP requests to
the websites we want to classify to download enough data
from the webpage to utilize the available bandwidth (5Mbps,
10Mbps).

We use the findcdn [4] tool to identify if a website is
hosted by a CDN. Occasionally, this tool returns more than
one CDN for a given website. In those cases, we use the first
result returned by this tool.

Unresponsive and invalid traces: Table 3 shows a sum-
mary of how many websites we were able to successfully
classify and their classifications. 34% of the Top 10K web-
sites did not respond to h2load and 13% had RTTs that were
larger than 85ms. In addition, we measure the bandwidth
utilization for each trace. We set a bandwidth threshold of
80% because for all our training samples, the CCA is able
to use at least 90% of the available bandwidth; a threshold
of 80% gives some headroom. A trace is marked invalid if it
does not meet the bandwidth threshold. A website is marked
as "All Invalid" if all of the traces collected for that website
do not meet the bandwidth threshold. 9% of the websites
have traces that are all invalid.

Clustering within CDNs: We initially classify each web
server using the methodology described in §3.3.1, and report
those numbers in Table 3 (the numbers before slashes). We
notice about 1600+ websites are marked as unknown which
means most of the traces for these websites were not close
enough to their closest training sample. Recall in §3.3.4, when
we determined the distance threshold, we set a small𝑇 based
on experiments to an AWS server. We favored false unknowns
vs. false knowns. Because of the likely possibility of more
noise in our measurements to third-party servers, the dis-
tance threshold may be too conservative. To further reduce
false unknowns, we do an additional clustering step where
we may re-classify websites. The values after the slashes are
the counts per CDN, per CCA if there were changes after
this additional clustering step.
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Akamai 470/491 0 3/4 4 0 0 0 0 0 0 0 115/91 189 36 233 1050
Cloudflare 1233/1595 0 6/7 5/6 0 0 0 1 0 0 0 824/460 394 55 989 3507
Cloudfront 530/545 0 9/10 7/10 0 0 3/2 0 0 0 0 74/56 78 10 121 832
Fastly 21/25 1/13 3 25/130 0 0 0/1 0 0 0 0 174/52 26 3 30 283
Google 29 0 1 2 0 0 2 0 0 0 1 230 37 18 66 386
Other CDN 28/32 2/0 1 53/92 0 0 1 0 0 0 0 72/31 54 41 226 478
No CDN 116/122 3/0 8/9 89/116 3/5 2 5 4/3 1/0 3 0 146/115 127 1205 1752 3464

Total 2427/2839 6/13 31/35 185/360 3/5 2 11 5/4 1/0 3 1 1635/1035 905 1368 3417 10000
Table 3: Classification results for websites by CDN websites. The values after the slashes are after a clustering step
on traces within each CDN.

…

Figure 17: Example of a portion of a dendrogram from
hierarchical clustering Fastly websites in 5bw-85rtt-
128q setting. The vertical line is the distance threshold.

In this additional step, we cluster all the CCAs that are in
the same CDN using agglomerative clustering [41]. Agglom-
erative clustering works by putting each sample initially in
its own cluster, and then merging samples into the same
cluster based on the distances between the samples. We use
the "average" metric based on the DTW distances between
all samples, which links samples to minimize the average of
the distances of each observation of the two sets. Once we
compute the links between all the samples, samples can be
put into clusters based on a distance threshold; we use the
distance thresholds described in Table 2. If a resulting cluster
contains 5% or more labeled traces, we re-classify unknowns
or invalid traces as that label. For the cases where we re-
classify, while the traces initially labelled unknown are not
close enough to other training samples, they are close enough

to other testing samples with a known label. We believe in
this case, these are false unknowns and should be given a
known label. After re-classifying traces, we re-do the voting
across the 4 settings (§3.4) and give websites potentially new
labels (we do not re-label ’All Invalid’ websites).

We see two notable changes after this clustering of all sam-
ples from the same CDN. First, the majority of the unknown
Fastly websites (105) are re-classified as Cubic. Second, there
is a similar shift with Cloudflare websites: 362 websites are
re-classified as BBR. In Fig. 17, we visually show the partial
output of the clustering of Fastly results. The yellow vertical
dotted line shows the clustering distance threshold used. The
labels on the green lines indicate the final label given to all
traces in each cluster and the number of traces in the cluster.
The boxes on the left show some example traces in each clus-
ter, along with their initial label. For example, in the cluster
labeled ’cubic (N=151)’, 20% of these traces are Cubic traces
so this cluster is labelled Cubic. It is encouraging that the
these traces are highly similar and are clearly Cubic traces
based on manual inspection. Similarly, the process does a
good job keeping the ’unknown’ label for unusual traces.
There are two benefits of this clustering step. First, we

can validate the results of our classification. Looking at the
dendrograms of the output we can visualize how close sam-
ples are to each other and can see at what distance threshold
similar samples are clustered together (highlighting the in-
terpretability of CCAnalyzer results). We expect like traces
to end up close together, while dissimilar traces to be far
apart. Second, which we demonstrate in Fig. 17, it can help
classify false negative unknowns as actually known CCAs.
5.2 Clustering Unknowns
After the initial classification as well as the clustering

within CDNs and validation, we now have websites that are
11
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Figure 18: Example trace from a Google website that
we believe is BBRv3 from 2 settings: 10bw-130rtt-128q
(left), 10bw-85rtt-128q (right)
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Figure 19: Example of unknown traces from websites
not hosted by a CDN.

still classified as unknown. We take the traces from all of
these websites, across CDNs, and run agglomerative clus-
tering on all of them. We manually view the dendrogram of
these results and look for web servers that are likely using
the same unknown CCA.

BBRv3: We notice that the majority of websites originat-
ing from Google CDN are classified as unknown when we
expected to see BBRv1. We see these traces are closest to
BBRv1, but the periods of bandwidth probing and RTT prob-
ing are more spaced out. Fig. 18 shows an example queue
occupancy traces for 2 settings for scholar.google.com.
We conclude these CCAs are using BBRv3 and confirm with
Google’s BBR team [2]. According to presentations from
Google, BBRv3 was deployed on Google servers by Summer
2023 when our measurement study was conducted in Fall
2023. Based on clustering, we label 102 Google CDN web-
sites originally classified as unknown instead as BBRv3. This
example also highlights the ease in discovering new CCAs
with CCAnalyzer.

Other Unknowns: Our ability to cluster traces using DTW
distances makes discovering newCCAs a simple and straight-
forward process of reviewing queue occupancy traces, den-
drograms and DTW distances. We see the potential for fur-
ther reverse engineering of these CCAs using recentwork [22].
While some unknowns can be re-classified as existing de-
signs as part of the clustering process, we still see other
behaviors that remain classified as unknown, like clusters
unknown #1-#3 in Fig. 17. In our broader study of websites,
we find several websites using unknown CCAs which we
highlight in Fig. 19. Note that further study is needed to

determine if these are truly novel CCA designs or a known
CCA in an unexpected or pathological state.
5.3 Takeaways

Widespread deployment of BBRv1: Our measurement
study finds that 54% of the 5215 websites that are possible
to classify, are classified as using BBRv1 and that only 6.9%
are classified as Cubic. Comparing this finding to the results
reported from Gordon and IG studies, we see increasing de-
ployment of BBR and decreases in Cubic. Similar to the IG
study, we find Fastly is using Cubic and Cloudflare is using
BBRv1. While Gordon mentions Akamai is using some un-
known CCA variant, which they note is likely FastTCP [40],
we find that the majority of Akamai servers now use BBR.
These results suggest a change in the most widely-deployed
CCA from Cubic to BBR. This would represent a significant
shift from an Internet dominated by loss-based congestion
control to something else entirely [38]. This shift may, in
turn, impact the design of many Internet systems and com-
ponents.

Limitations: Themost significant limitation of ourmeasure-
ment study is the performance/functionality requirement
placed on servers. To classify a server, we require it to sup-
port HTTP pipelining (for h2load to work), to utilize over
80% of our 5 and 10mbps links, and to have an RTT of less
than 85ms to our servers. As noted earlier, 34% of the servers
did not respond to h2load, 9% had too low bandwidth and
13% had too high RTTs. Multiple vantage points could avoid
some of the low bandwidth or high RTT issues and iden-
tifying large files to transfer on test servers could reduce
the need for HTTP pipelining. We believe that our study
achieved its goal of finding significant deployment trends
and testing the efficacy of our design. We leave exploration
of characterizing more servers to future work.

6 Conclusion
CCAnalyzer makes a significant step forward in CCA

classification. While only relying on collecting bottleneck
queue occupancy traces, CCAnalyzer achieves accuracy that
is equal to or better than state-of-the-art classifiers, while
at the same time providing several additional benefits: it is
efficient, unobtrusive, open-set, and has interpretable results.
We use CCAnalyzer to analyze the CCAs of 5000+ websites.
CCAnalyzer’s DTW-based distance measure allows it to not
only detect unknownCCAs, but also cluster them into groups
of similar unknowns, simplifying the detection and classifi-
cation of new CCA variants as they appear on the Internet.
Unlike prior work, CCAnalyzer’s approach has the potential
to classify the rising popularity of user-space protocols (e.g.
QUIC) and other popular applications (e.g. video streaming),
a promising direction for future work.
Ethics: This work does not raise any ethical issues.
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A Artifacts
The testbed will be made available to use via Cloudlab [21].

All website measurement data will also be made available.

B Formal DTW definition
To understand DTW, we first consider a naive approach to

compare two traces. Consider two queue occupancy traces,
𝑋 = (𝑥1...𝑥𝑛) and 𝑌 = (𝑦1...𝑦𝑚), where 𝑥𝑖 is the queue occu-
pancy at time 𝑖 in trace 𝑋 , where X is 𝑛 time steps long. A
simple approach to measuring the difference between the
two traces is to to calculate the Euclidean distance (assuming
X and Y are the same length 𝑛 =𝑚):

𝐸𝐷 (𝐴, 𝐵) =

√√
𝑛∑︁
𝑖=0

(𝑋 [𝑖] − 𝑌 [𝑖])2

Unlike ED, DTW allows a one-to-many mapping between
𝑋 and 𝑌 : a given index from each trace can map to one or
more indices in the other trace. DTW finds the best point
mapping between two traces to minimize the sum of dis-
tances between all their points with two constraints: 1) The
first and last indices must be mapped to one another and 2)
the mappings must be monotonically increasing.

DTW finds the optimal "warp path", the one-to-many map-
ping between points in an NxM matrix where N and M are
the lengths of two time series, that minimizes the overall
distance between the time series. Exact mappings would be
a diagonal line, but DTW accounts for phase shifts with hor-
izontal and diagonal lines which show when many points in
one trace are mapping to the same point in the other trace.
For DTW the time series need not be the same length, al-
though in this work we truncate all the traces to be the same
size.
More formally, let 𝐷𝑇𝑊 (𝑖, 𝑗) be the optimal distance be-

tween the first 𝑖 and 𝑗 elements in time series X and Y. Then,
the value of 𝐷𝑇𝑊 (𝑖, 𝑗) is defined recursively as follows:

𝐷𝑇𝑊 (𝑖, 𝑗) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖 , 𝑦𝑖 )

+min


𝐷𝑇𝑊 (𝑖, 𝑗 − 1) repeat 𝑥𝑖
𝐷𝑇𝑊 (𝑖 − 1, 𝑗) repeat 𝑦𝑖
𝐷𝑇𝑊 (𝑖 − 1, 𝑗 − 1) repeat neither

where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖 , 𝑦𝑖 ) may be defined in different ways in-
cluding the squared difference which we use in Fig. 3; in the
rest of this work we find the absolute difference works better
for our use case |𝑥𝑖 − 𝑦𝑖 |.
C Example training samples

We highlight some example training samples for the 5bw-
85rtt-64q setting in Fig. 26 to give some sense for what the
traces look like for 20s for each CCA. These traces each
capture some of the cyclical behavior of each CCA which
helps CCAnalyzer to be accurate and interpretable.
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Figure 20: AWS Ohio: Accuracy for simply mapping
each training sample to its ‘best’ testing sample for
each of 15 CCAs per network setting. Here we still see
a 95% accuracy. (§3.3.2)
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Figure 21: AWS Ohio: Results from classification for
truncated traces in accurate settings.We can get perfect
and near perfect accuracy with as little as 20s flows.
(§3.3.3)

D Parameter tuning: AWS Ohio results
Throughout this work, we show results (§3.3) for using

a testing set from an Azure web server (Testing Set 1). In
this section, we show the results for using an AWS Ohio
web server testing set. These results are similar to the Azure
results and in some cases, identical. In addition, as we men-
tioned in §3.3.4, we try to determine what the distance thresh-
old should be using the AWS-Ohio testing set. We have in-
cluded the graph results here and pointed to the relevant
sections in their captions.
Testing Set 2 (AWS-Ohio): Ubuntu 22.04.2, Linux kernel

version 5.19. 5 samples per CCA. RTT to testbed 22ms.
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marked as unknown in the Gordon results. (§4.1)
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Figure 23: CCAnalyzer, AWS Ohio: Individual votes
when classifying. (§4.1)
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Figure 24: Comparison between CCAnalyzer, IG and
Gordon classifying the same AWS Ohio server. (§4.1)
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Figure 26: Example CCAnalyzer CCA training sample
traces from AWS-Virginia (5bw-85rtt-64q setting)
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Figure 27: The full dendrogram of results from clus-
tering across all the Fastly websites (5bw-85rtt- 128q
setting) using the distance threshold. (§5) Each leaf
shows one testing sample from each of the resulting
clusters. Clusters with numbers indicate how many
samples are in that cluster.
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