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ABSTRACT
The Internet community faces an explosion in new congestion
control algorithms such as Copa, Sprout, PCC, and BBR. In this
paper, we discuss considerations for deploying new algorithms
on the Internet. While past efforts have focused on achieving
‘fairness’ or ‘friendliness’ between new algorithms and deployed
algorithms, we instead advocate for an approach centered on
quantifying and limiting harm caused by the new algorithm on
the status quo. We argue that a harm-based approach is more
practical,more futureproof, andhandlesawider rangeofquality
metrics than traditional notions of fairness and friendliness.
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1 INTRODUCTION
In recent years, the networking research community has
generated an explosion of new congestion control algorithms
(CCAs) [1, 2, 5, 6, 25–27], many of which are being explored
by Internet content providers [4, 19]. This state of affairs
brings the community back to an age-old question: what
criteria dowe use to decidewhether a new congestion control
algorithm is acceptable to deploy on the Internet?Without a
standard deployment threshold, we are leftwithout foundation
to argue whether a service provider’s new algorithm is or
is not overly-aggressive.

A deployment threshold concerns inter-CCA phenomena,
not intra-CCA phenomena. Rather than analyzing the
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outcomes between a collection of flows, all using some CCA
α , we need to analyze what happens when a new CCA α is
deployed on a network with flows using some legacy CCA
β . Is α ’s impact on the status quo is acceptable?
Our community has traditionally analyzed inter-CCA

competition in two ways, which we refer to as ‘fairness’ and
‘mimicry.’ While both approaches are insightful, we argue
that neither is a sound basis for a deployment threshold.

A throughput allocation is fair if it maximizes every users
utility function given limited link capacity [21]. A end-host
CCA, typically defines users as flows, aiming tomaximize util-
ity per-flow by ensuring that every flow sharing the same bot-
tleneck link gets equal bandwidth. For example, CCA design-
ers try to argue their CCA α is deployable if it is fair to Cubic
(β), the default CCA in Linux [1, 3–6, 26]. However, a fairness-
based deployment threshold suffers from three key issues:

(1) Ideal-Driven Goalposting: A fairness-based threshold
asserts a new CCA α should equally share the bottelneck
link with currently deployed CCA β . In practice, this goal
is too idealistic to achieve in practice. The end result is that
ideal-driven goalposts are simply ignored as impractically
high requirements. For example, CCA designers have argued
that it is acceptable to be unfair to Cubic because Cubic is
not even fair to itself [1].

(2) Throughput-Centricity: A fairness-based threshold focuses
on how a new CCA α impacts a competitor flow using CCA
β by focusing on β ’s achieved throughput. However, this ig-
nores other important figures of merit for good performance,
such as latency, flow completion time, or loss rate.

(2) Assumption of Balance: Inter-CCA interactions often
have some bias, but a fairness metric cannot tell whether
the outcome is biased for or against the status quo. It makes
a difference in terms a deployability whether a new CCA
α takes a larger share of bandwidth than a legacy CCA β or
leaves a larger share for β to consume: the former might elicit
complaints from legacy users of β , where the latter would
not. Jain’s Fairness Index [12] assigns an equivalent score
to both scenarios.

Mimicry is a separate approach where new algorithms
replicate properties of TCP-Reno (e.g., driving throughput
as a function of the loss rate [18]) in order to be ‘friendly’
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to legacy, Reno-derived TCPs. The issue with mimicry
is that it binds new algorithms to repeating the often
undesirable idiosyncrasies of Reno, stifling improvement
and evolution [13]. We discuss the drawbacks of fairness and
mimicry as the basis of a deployment threshold further in §2.

We advocate instead for a deployment threshold based on
harm. Harm allows us to speak in quantifiable, measurable
terms about the impact of deploying a new CCA to the Inter-
net. One can use measurements or models to determine that,
in the presence of a competing flowusingCCAα , a flowusing
a CCA β suffers, e.g. a 50% reduction in throughput or a 10%
increase in latency. We refer to this degradation as the harm.

Perhaps themost crucial aspect of harm is recognizing that
we are not designing a clean-slate Internet. We believe that
we need to shift our focus from if pairs of CCAs ’fairly‘ share
and instead focus on how a new CCA impacts the status quo
(whether or not the new algorithm damages the performance
of existing traffic). We argue that our deployment threshold
should be based on the amount of harm already caused by
deployed algorithms.

If the amount of harm caused by flows using a new algorithm
α on flows using an algorithm β is within a bound derived from
how much harm β flows cause other β flows, we can consider
α deployable alongside β .

Turning this insight into a concrete threshold is chal-
lenging; we present three approaches in §4. Nonetheless, we
believe that a harm-based threshold is the right way forward.
A harm-based threshold avoids ideal-driven goalposts like
fairness by settling for outcomes that are unfair, but no worse
than the status quo. A harm based-threshold does not suffer
from the limits of throughput centricity. We can speak of
throughput-harm as well as latency-harm, FCT-harm, or
loss-harm. Lastly, a harm based-threshold prescribes no
mechanism or behavior to replicate, which allows for a
broader range of outcomes than mimicry.

In what follows, we discuss the limitations of fairness and
mimicry in §2.We then introduce harm in §3, how to quantify
it, and our intuition as to why a harm-based threshold is the
right path forward for the Internet. In §4 we propose three
possible harm-based thresholds. Finally, in §6, we leave open
questions for the community and conclude.

2 FAIRNESS ANDMIMICRY
Our goal in this paper is to identify a deployment threshold:
a bound on the behavior of a new CCA when competing
with legacy CCAs. If a new CCAmeets the conditions of the
threshold, we ought to consider it deployable. Furthermore,
if a new CCA does not meet the conditions, it should be
considered unacceptable for deployment. In this section,
we discuss the limitations of prior approaches to evaluating
new CCAs and their interactions with other algorithms. We

argue that both fairness(§2.1) and mimicry based approaches
(§2.2) are unsuitable for a deployment threshold. Through
our discussion, we derive a set of desiderata for a deployment
threshold, which we list in Table 1.

2.1 Limitations of Fairness
Fairnessmeasures are the typical tool used for determining if a
newCCA is deployable in the Internet [1, 6]. A fairness-based
threshold, asserts if a CCA α is fair to a legacy CCA β , then
the algorithm is deployable. Fairness is typically measured by
looking at the throughput ratio between competing CCAs or
by computing Jain’s Fairness Index (JFI) [12], which returns
a number between 1 (perfectly meeting the expected fair
allocation) and 0 (the closer to 0, the more ‘unfair‘).
Typically, fairness is measured assuming infinitely

backlogged flows: each flow wants to use an equal fraction
of the bottleneck link. In this case, we expect the throughput
ratio and Jain’s Fairness Index to be 1. In reality, not all
flows are infinitely backlogged and not all flows can fully
utilize their equal share. In that case, equal rate fairness has a
well-known shortcoming: it does not account for the demand
of each flow. Demand is the amount of resources a flow uses
when operating in absence of contention. Consider a new
CCA α competing against a TCP NewReno flow on a 10Gbps
link. We know that the NewReno algorithmwill fail to take
advantage of the full link capacity due to its slow additive
increase and aggressive reaction to loss [8].
Intuitively, it would seem that a new flow using α should

be able to take advantage of the remainder of link capacity,
but equal rate fairness disallows such an outcome. Including
demand is important for a deployment threshold: a new CCA
should not be penalized as ‘unfair’ to a legacy CCA when
the legacy CCA, on its own, is incapable of claiming its equal
share of the network. Hence, we list ‘Demand-Aware’ as
our first item in Table 1. Unlike equal rate fairness, max-min
fairness, allows for flows to increase its rate if it would not de-
crease the rate of any other flows [21]. Thus, whenwe refer to
fairness throughout this paper, we refer to max-min fairness.
Although we argue against a fairness-based deployment

threshold, fairness measures have many practical uses in the
design of CCAs and scheduling systems. In this section, we do
not attack fairness as a valuedmeasure for systems in general.
In particular, we believe throughput fairness is sometimes
a desirable property, especially for intra-CCA interactions.
Nonetheless, we object to using fairness measures as a
threshold for determining CCA deployability for the reasons
we discuss as follows.

2.1.1 Throughput-Centricity. Fairness strategies focus on
sharing a resource like ‘dividing a pie’. This is appropriate
for performance metrics like throughput since there is
a maximum link capacity which must be divided by all
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Demand-Aware Like max-min fairness, takes into
account the fact that some flows have
different demands than others.

Multi-metric Addresses throughput, latency, flow com-
pletion time, or any other performance
metric.

Practical Practical, rather than ideal-driven
(unlike fairness); it should be feasible for
new CCAs to meet this threshold.

Status-Quo Biased Does not suffer from the assumption of
balance. Specifically, we should worry
about the impact of a new CCA on the
currently deployed CCAs, and should
not focus on how deployed CCAs harm
a new CCA.

Future-Proof Useful on a future Internet where none
of today’s current CCAs are deployed;
does not restrict the development of new
CCAs based on the idiosyncrasies of
currently deployed CCAs.

Table 1: Desiderata for a deployment threshold, de-
rived from insights and shortcomings of fairness and
mimicry.
competing flows. However, modern CCA designers consider
many performance metrics which do not always easily map
to a network resource which should be divided or shared, e.g.,
latency, loss rate, flow completion time.
Consider a future Internet where the majority of Internet

services use aTCPalgorithmcalledtinybufferwhich, like al-
gorithms BBR and Vegas, has very little queue occupancy and
therefore low latency and loss. Hence, tinybuffer provides
very good user experience for video conferencing and voice
calls. A new company wishes to introduce a new algorithm α ,
which is derived from Cubic and therefore fills buffers. Is this
an acceptable deployment? Videochat users of tinybuffer
would likely sayno, sinceα flowscompetingwithtinybuffer
would increase latency and loss, harming their video calls.

Unfortunately, we cannot say that the behavior of α
relative to tinybuffer is ‘unfair’ – buffer occupancy is not
a resource we want to divide equally. Instead, it is a value
we simply want minimized which is not captured by the
concept of fairness. For this reason, we say that fairness is
not ‘multi-metric’, our second requirement in Table 1.

2.1.2 Ideal-Driven Goal Posts. A second problem with
fairness is that, evenwhenwe focus on throughput alone, it is
simply very difficult to achieve. For example, Cubic and Reno,
both known to have a ‘short flow penalty’ where short flows
do not achieve their fair share of throughput before complet-
ing [14, 16]. BBR is also unfair to connections with shorter
RTTs, allocating them lower throughput than competing
connections with long RTTs [2].1 If algorithm designers

1Reno’s throughput allocation has the opposite bias.
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Figure 1: Fairness and the assumption of balance.

cannot achieve perfect fairness in the intra-CCA context, why
would it make sense to expect algorithm designers to achieve
perfect fairness in the more challenging inter-CCA context?
We list our third requirement in Table 1 as being ‘practical.’

Many readers at this point may find themselves thinking,
‘Of course we don’t expect new algorithms to be perfectly
fair to existing ones!’ But, even if we do not expect perfect
fairness, the community still leaves algorithm designers
with no real guideline for acceptability based on fairness.
This often results in CCA designers making the argument
that it acceptable for their algorithm to be somewhat unfair
to legacy CCAs. [1, 5, 6]. Nonetheless, we lack a practical
threshold and clear consensus on how far from perfectly fair
sharing a new algorithmmay be permitted to deviate.

2.1.3 The Assumption of Balance. We call our third
and final objection to fairness the Assumption of Balance,
meaning that it values the performance outcome of both the
new CCA and the existing, deployed CCA.

To illustrate our objection, we look to Figure 1.We imagine
a future Internet where most senders use some algorithm β ;
two senders are transmitting very large files over a 100Mbps
link. Sender B is using β , but sender A is using some brand
new algorithm α . Both senders’ demands are 100Mbps –
both desire to use as much capacity as they can. However,
sender B achieves 90Mbps throughput and sender A only
achieves 10Mbps. Is this fair? No. In both the above scenario
and a scenario where the allocations are swapped (B receives
10Mbps, A receives 90Mbps) have the same JFI – 0.61. But,
it should be perfectly acceptable to deploy α if α is the one
receiving unfair treatment – no users other than user A, who
chose to use α , would be impacted negatively.

It ishighlyunlikely thatmanynewserviceswill setout tode-
liberately deploy algorithms that penalize the performance of
their own flows – but given the difficulty of achieving perfect
fairness (§2.1.2) it is likely that this outcomemay happen in
some scenarios.2 Avery deployable, friendly algorithmwould
erron the sideofharming theirownconnectionswhereamore
aggressive algorithmwould err on the side of harming those

2ConsiderGoogle’s BBR,which,when oneBBRflow competeswith one Reno
flowwill only consume 40% of link capacity – less than its fair share [2, 24].
Furthermore, ‘background’ CCA algorithms, such as TCP-Nice [23]
and LEDBAT [20] deliberately only consume leftover bandwidth that is
underutilized by other connections.
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of others – and a goodmeasure of deployability should be able
to distinguish between the two. Thus, our fourth requirement
in Table 1 is that the new threshold be ‘status-quo biased.’

2.2 Limitations ofMimicry
A mimicry-based threshold asserts if a CCA α mimics the
behavior of a legacy CCA β , then the algorithm is deployable.
Twomimicry based approaches are:
TCP-Friendly Rate Control (TFRC) [18]: a CCA using
TCP-Friendly Rate Control transmits at a rate ≤ MSS

RTT ∗
√
p for p

the link loss rate; this formula describes TCP Reno’s average
sending rate over time [15, 17].
RTT-biased Allocation [7]: a CCA obeying RTT-biased
Allocation grants more throughput to connections with
low RTTs than to those with higher RTTs; this behavior is
a property of TCP Reno.
Mimicry introduces an elegant solution to the challenge

of ideal-driven goal posts: it should be acceptable to deploy
a new CCAwhich introduces the same side-effects – fair or
unfair – as the already deployed algorithm. A mimicry-based
approach is always practical because the existence of the
original, deployed algorithm demonstrates at least one way
to achieve these performance outcomes (although as TFRC
illustrates, a CCA may use a different algorithm than the
original to achieve this outcome).
However, mimicry will not serve as a good threshold

because it binds new algorithms to replicating the often
undesirable idiosyncrasies of the deployed CCA, and hence
stifles improvements and evolution. For example, TFRC
limits new CCAs from achieving high throughput. Indeed,
an animus for most of the new CCAs which are replacing
Reno on today’s Internet (e.g. Cubic [9], Compound [22])
was to supersede the ≤ MSS

RTT ∗
√
p rate, as this very limit is what

prevents Reno from taking advantage of high-capacity links.
Similarly, RTT-biased Allocation is not an ideal outcome

that was proposed from first principles: it is simply the
throughput allocation that Reno achieves. Given this,
perhaps it should be acceptable, on an Internet dominated
by RTT-biased algorithms, to deploy yet another RTT-biased
algorithm – but RTT-bias should not be enshrined as the goal
itself.3

In a future Internet where no one any longer deploys Reno
variants, a mimicry-based threshold would lack grounding;
evenworse, it couldprevent us fromreaching a future Internet

3Some will disagree with us, arguing that longer flows consume more
network resources and therefore should receive lower throughput [7] –
and call this ‘RTT Fairness.’ This could be a good reason to continue with
RTT-biased allocation. Our point is that, if we really preferMax-Min fairness,
it would be bad to continue with RTT-biased allocation simply because we
have required ourselves to mimic Reno’s behavior.

with improved fairness, lower latency, etc. due to our replicat-
ing the inherent limitations of existing CCAs. Thus, our final
requirement in Table 1 is that our threshold be ‘future-proof.’

3 HARM
Wenow present harm, and argue that a harm-based threshold
would meet all of our desiderata. In the next section (§4), we
present a few possible harm-based thresholds.

3.1 Calculating Harm
We imagine a TCP connectionwhere Alice is video conferenc-
ing with her friend Bob. When running alone, the connection
achieves 15Mbps of throughput, packets arrive with 40ms
latency, and jitter is 10ms. When Alice’s roommate Charlie
starts a large file transfer, Alice’s video conference connection
drops to 10Mbps of throughput, latency increases to 50ms,
and jitter increases to 15ms. Since all of these performance
metrics became worse due to to Charlie’s connection, we say
that Charlie’s connection caused harm to Alice’s connection.
We can measure harm by placing it on a [0,1] scale (much

like Jain’s Fairness Index [12]) where 1 is maximally harmful,
and 0 is harmless. Let x = demand (solo performance); let y
= performance after introduction of a competitor connection.
For metrics where ‘more is better’ (like throughput and QoE)
harm is x−y

x . For metrics where ‘less is better’ (like latency
or flow completion time) harm is y−x

y . On this scale, Charlie
caused 0.33 throughput harm, 0.2 latency harm, and 0.33 loss
harm.
The amount of harm done by one TCP connection to

another depends not only on the algorithm(s) in use, but also
the network and workload. For example, a connection with
a very bursty traffic pattern will induce higher worst-case
latency for competitor connections than a connection with
very steady, paced traffic (a change in workload). Throughput
harm between TCP Cubic and BBR varies depending on
whether the network is shallow or deeply buffered [2] (a
change in network). Note that we also include background
traffic in our model of the ‘network’.
Harm is multi-metric. It can be computed for latency,
throughput, jitter, or any other quantifiable measure.
Harmis demand-aware.Harm is computed froma baseline
of a TCP connection running on its own; new algorithms are
not penalized when deployed algorithms perform poorly due
to their own limitations. A flow which only ever consumes
10% of link capacity has no throughput harm done to it when
another flow arrives and consumes the remaining 90%. A flow
using a CCA which occupies all of the buffer space has no
latency harm done to it when another buffer filling algorithm
competes with it.
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Harm is status-quo biased.Harm does not suffer from the
assumption of balance because it does not involve the perfor-
mance of connections using the new algorithm at all. Harm
onlymeasures the new connection’s impact on existing flows.
In the next section (§3.2), we provide the intuition behind

how to derive a threshold from harm, and why such a
threshold would be practical and future-proof. Then (§4) we
discuss several proposals for a threshold based on harm.

3.2 AHarm-Based Threshold
Simply measuring harm does not tell us whether or not the
harm introduced by a new algorithm is acceptable. We take
inspiration here from TCP mimicry (§2.2): the behaviors
of deployed algorithms today should be our guidelines for
what is acceptable. However, we need to relax mimicry to
allow innovation and improvement. We suggest that, if the
harm done by a new CCA α to an widely-deployed CCA β
is comparable or less than the harm done when β competes
against β , we should consider it acceptable to deploy.We say
that the harm of the alpha upon beta is bounded by the harm
already done byalpha to itself.We leave up to discussion how
‘widely-deployed’ a β must be in order to merit protection
under our deployment threshold.

For example, a new algorithmα is developed for a future In-
ternet where the predominant algorithm is called k-latency.
Every flow in k-latencymaintains a constant queue occu-
pancy of exactly k packets – thus, latency increases linearly
with the number of competing flows. A harm based thresh-
old, grounded in how k-latency connections interact in the
intra-CCA scenario, would deemα acceptable with respect to
latency so longas it never buffersmore thank packets perflow.
The difference between bounded harm and mimicry can

be subtle. In the above example, mimicry would demand that
α always buffer exactly k packets per flow, just as k-latency
does (restricting improvement). On the other hand, bounded
harm allows α to buffer up to k packets while competing with
k-latency (allowing for improvement, if feasible). Bounded
harm allows for a broader range of outcomes than mimicry.
Further the bound for α is undefined when not competing
with k-latency – α flows may behave differently when
competing with other α flows or competing with some third
CCAγ . For example, ‘modal’ algorithms like Copa [1], exhibit
very diverse behaviors within one CCA, adjusting behavior
online as different cross-traffic is detected. But, an algorithm
need not be explicitlymodal to have bounded-harmoutcomes
that are acceptable across multiple CCAs.
On an Internet with many competing algorithms β,γ ,ϕ ...

(as today’s Internet) onemight askwhyweareboundingharm
fromanewα to theharm that each algorithmdoes to itself.We
suggest thatα do harm to β flows that is bounded by the harm
caused to β byother β flows, and thatα doharm toγ flows that

is bounded by the harm caused toγ by otherγ flows.Why not
boundα ’s behavior in the harm done by β toγ and vice versa?
One reason we reject this approach is that on today’s

Internet, there are many well-known pessimal cross-CCA
outcomes (e.g., BBR’s starving Cubic on high capacity
links [11]). A CCA designer for a new CCA α could use
the existence of any single pessimal scenario to justify
continuing that behavior with α . By bounding harm to a CCA
by the harm any other CCA, we settle for the absolute lowest
common denominator in performance outcomes.
Furthermore, bounding the inter-CCA harm (caused by

a new α on an existing β) by the intra-CCA harm (caused
by β to β) carries forward the design trade-offs made by
CCA developers. CCA designers tune their algorithms for
the outcomes they want under intra-CCA competition. The
designers of Reno and Cubic allow the loss rate to increase
with the number of competing Reno/Cubic flows [15].
The designers of BBR aim to keep buffers empty, but do
allow the queue occupancy to increase when multiple BBR
flow compete [10]. In this way, the designers implicitly
encode their tolerance to performance degradation for each
metric. As a consequence, bounding inter-CCA harm by
the intra-CCA harmmeans that new CCAs will respect the
implicitly expressed preferences of typical traffic.
In practice, we already see CCA designers try to make

the argument that their algorithm is deployable because it
is not any more aggressive towards the status-quo (Cubic)
than it is to itself [1, 4–6]. Unforunately, they try to make this
argument using fairness, which suffers from the limitations
dicussed in §2.1. We believe explicitly measuring harm
would give CCA designers a more clear language to argue for
deployability. The networking community need only agree
on concrete harm-based threshold to provide a guideline for
howmuch harm is allowable.
Unlike fairness, a harm-based threshold is practical.
The original algorithm is an existence proof that the
demanded threshold is feasible and hence the goal posts
cannot be set too high.
Unlikemimicry, a harm-based threshold is future-
proof.A harm-based threshold does not require replicating
the behavior of a deployed algorithm – only matching or
improving upon its outcomes while competing with that
algorithm. Furthermore, as CCAs die out in popularity or
new ones arise, a harm-based threshold will shift to requiring
similar harm to the new algorithms rather than the old ones.
The reader may wonder how an algorithm can be both

status-quo biased and future proof. Consider the bi-modal
Copa algorithm [1]. Unlike a mimcry approach, Copa only
seeks to match the throughput of loss-based algorithms
when it detects its competition is loss-based. When Copa is
alone, it behaves like a delay-based algorithm, minimizing
excess queueing. So, in a world, where legacy algorithms are
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Figure 2: Under Worst Case Bounded Harm, a new α
may do as much harm to a β flow f as any other β flow
in the same network.

nearly phased out, Copa will be able to behave differently
than legacy loss-based algorithms. Further, if Copa were to
become widely deployed, subsequent algorithms would then
measure harm against Copa’s delayed-based behavior.
Deriving a concise, usable harm-based threshold is
challenging. So far, we have only described how to measure
harm and why a harm-based threshold is overcomes the
limitations of fairness and mimicry. However, we have not
yet defined a concrete deployment threshold based on harm.
We believe a concrete threshold should consider how harm
plays out between existing algorithms. In the next section,
we propose several harm-based thresholds – and invite the
community to scrutinize and improve upon them.

4 CONCRETE THRESHOLDS
We now discuss several options for a concrete threshold,
driven by our intuition from §3. We define the following
variables and functions to help discuss each:

Let a TCP connection (‘flow’) f = (a,w) for a ∈A, the set of
all congestion control algorithms, andw ∈W , the set of all
connection workloads (short flows, video streams, etc.).

Let M be the set of all performance metrics (throughput,
latency, QoE, jitter, etc.).

LetN be the set of all networkpaths (withvarying throughput,
latency, loss rate, queue capacity, and background traffic).

Let harm(fi , fj ,n ∈ N ,m ∈ M) be the harm done to fi by fj
according to metricm in network n as defined in §3.

Note, we assume to compare the harm across workloads,
you must compare them using harm functions with the same
metric. Because of our status-quo bias, the harm function
should be determined by the workload and CCA β . For
example, if we assume β is adaptive bitrate video using BBR,
the harm function might use some metric for quality of
experience like rebuffering rate.

4.1 Worst Case BoundedHarm
We illustrate our first potential threshold in Figure 2. We
imagine a network with numerous applications and servers

all of which use a legacy CCA β . We want to deploy a new ap-
plication with workloadw⋆ using CCA α . Is this acceptable?
We can start by considering whether it is acceptable to

deploy (α ,w⋆) alongside a specific flow f = (β,w). Worst case
bounded harm looks to theworst case harm f might receive
from any of the other services, with their workloadsw1,w2,....
If (α ,w⋆) does not more harm than this worst case, we would
consider it acceptable.
Definition: A TCP connection f ⋆ = (α ,w⋆) for α a new
algorithm andw⋆ a specific traffic workload, respectsworst
case harmwith respect to metricm for an algorithm β iff

∀f =(β ,w ∈W ),∀n ∈N :

harm(f ,f ⋆,n,m)≤ max
w†∈W

(harm(f ,(β ,w†),n,m))

We similarly say that the algorithm α itself hasworst-case
harm equivalence with respect tom for β if all connections
fn = (α ,wn ∈W ) all respect worst-case harm inm.
Suitabilityasadeployment threshold:Worst-casebound-
ed harm, as a threshold, is too loose: it can allow the outcomes
of pathological scenarios to become common through the
deployment of a newCCA. Consider a CCA β which is widely
deployed and has perfect performance under competition:
an ideal fair-sharing allocation, no additional latency, jitter
or loss due to new flows, etc., with only one exception. A
pessimal workload, ŵ can cause any other flow to suffer
starvation. However, ŵ is extremely rare – so rare in practice
that β generallyworkswell. Nonetheless, amalicious protocol
designer can take advantage of that – observing that there ex-
ists anyworkload that leads a flow f to starvation can justify
that all of the flows using the newCCA cause starvation for f .
This is the same logic – avoiding falling to the lowest common
denominator – we used to argue against bounding harm
across arbitraryCCApairs (themaxharm in β vs someγ , §3.2),
and it is the same logic that leads us to reject bounding harm
across different networks (the max harm across all n ∈N ).

4.2 Equivalent BoundedHarm
To overcome the least common denominator challenge from
Worst-Case Bounded Harm, we consider an approach where
wepin theworkloads being compared.We illustrate theEquiv-
alentBoundedHarm inFigure 3.We start by focusingonapair
of workloadsw andw⋆ in a legacy networkwhere all services
use β . Wewant to switch the service with workloadw⋆ to use
α . With Equivalent Bounded Harm, α would be acceptable iff
(α ,w⋆) does no more harm to (β ,w) than (β ,w⋆)would.
Definition: A TCP connection f ⋆ = (α ,w⋆) for α a new
algorithm andw⋆ an specific traffic workload, has equivalent
harmwith respect to metricm for an algorithm β iff

∀f =(β,w ∈W ),∀n ∈N :
harm(f ,f ⋆,n,m)≤harm(f ,(β,w⋆),n,m)
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f = (β, w)
f2 = (β, w⋆)

receiver

receiver
n

 = Harm    causes to f2 fZ

f = (β, w)
f ⋆ = (α, w⋆)

receiver

receiver
n

f ⋆ may do no more harm than  Z

Figure 3: Under Equivalent Bounded Harm, a new α
with workloadw⋆ may do as much harm to a β flow as
a β flowwith workloadw⋆ as well.

We similarly say that the algorithm α itself has equivalent
bounded harm with respect to m for β if all connections
fn = (α ,wn ∈W ) are harmless inm.
Suitability as a deployment threshold: Equivalent
bound-ed harm is too strict to serve as a threshold. Consider a
CCA bigflowwhere large flows competing with short flows
lead to unfair outcomes. Large flows achieve 75% of available
bandwidth capacity and short flows achieve only 25% of
available bandwidth capacity. Requiring harm equivalence
would entail that short flows using any new algorithm α
would only ever be able to achieve up to 25% of the available
link capacity when competing with bigflow. Equivalent
bounded harm hence falls too close to the trap of mimicry
in constraining improvement.

4.3 Symmetric BoundedHarm
Our third proposal, shown in Figure 4, sits between the too-
strict harm-equivalence and the too-permissive worst-case
bounded harm. Symmetric Bounded Harm considers pairs of
workloadsw,w⋆ like harm-equivalence. For an existing CCA
β with a flow f running workloadw , the flow can receive as
much harm from (α ,w⋆) as either f would experience from
(β,w⋆) or as f would inflict on (β,w⋆).

Returning to bigflow, a large flow f1 may only receive
25% throughput-harm from a small flow f2, but since it also
inflicts 75% throughput-harm on f2, a small flow using a new
CCA α can inflict up to 75% throughput-harm on f1.
Definition:A TCP connection f ⋆= (α ,w⋆) for α a new algo-
rithmandw⋆ an specific trafficworkload, respects symmetric-
bounded harmwith respect to metricm for an algorithm β iff
∀f =(β,w ∈W ),∀n ∈N :

harm(f ,f ⋆,n,m)

≤max(harm(f ,(β,w⋆),n,m),harm((β,w⋆),f ,n,m))

We similarly say that the algorithm α itself has symmetric-
bounded harm equivalence with respect to m for β if all
connections fn = (α ,wn ∈W ) all respect symmetric-bounded
harm inm.
Suitability as a deployment threshold: Symmetric
bound-ed harm resonates with a sense of justice: ‘do unto
other flows as you would have other flows do to you.’ It is not
too restrictive, like harm equivalence, but it is not vulnerable
to the expansion of harm as we saw in worst-case harm.
For these reasons, we prefer symmetric-bounded harm as

f = (β, w)
f2 = (β, w⋆)

receiver

receiver
n

 = Harm    causes to f2 fY

f = (β, w)
f ⋆ = (α, w⋆)

receiver

receiver
n

f ⋆may do as much harm as    or  X Y
 = Harm    causes to f f2X

Figure 4: Under Symmetric Bounded Harm, a new α
with workloadw⋆ may do as much harm to a β flow f
as f does to (β ,w⋆) or as (β,w⋆) does to f .

a potential threshold to the prior two harm-based threshold.
Nonetheless, we believe that further work is needed to refine
an ideal harm-based threshold.

5 OPENQUESTIONS
Defining a harm-based threshold is only a first step in setting
the bar for deploying a new CCA in the Internet. Given a
harm-based threshold, we can eventually develop a modern
evaluation methodology for CCA deployability. This leaves
many open questions and directions for future work:

• Is there an better threshold that improves on symmetric
bounded harm?

• Given that Internet outcomes always have some
distribution of results, is there ‘leeway’ in harm? Should
we worry about average or worst-case results?

• How widely deployed must a legacy CCA be in order
to merit protection by our threshold?

• What are the right workloads for deployability testing?
• If we have a threshold, should it be enforced? If so, how?

6 DISCUSSION&CONCLUSION
We have argued for the networking community to adopt a
deployment threshold which provides a firm definition for
when a new CCA is allowed to be deployed on the Internet,
and when it is not. We believe that the right way forward
is by analyzing harm, a way to quantifiably measure the
outcomes of introducing a new CCA to the Internet.
We argue that the harm caused by a new CCA α should

be bounded by the status quo: do no more harm to flows
from a CCA β than β already inflicts upon itself. In this way,
algorithms can improve upon outcomes under contention
(do no more harm than) but are not required to meet overly
idealistic goals. A challenge remains in turning this insight
into a concise and practical formula for a threshold.
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