
This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-931971-43-0

Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Elastic Scaling of Stateful Network Functions
Shinae Woo, KAIST, UC Berkeley; Justine Sherry, CMU; Sangjin Han, UC Berkeley;

Sue Moon, KAIST; Sylvia Ratnasamy, UC Berkeley; Scott Shenker, UC Berkeley, ICSI

https://www.usenix.org/conference/nsdi18/presentation/woo

Elastic Scaling of Stateful Network Functions
Shinae Woo?†, Justine Sherry‡, Sangjin Han?, Sue Moon†, Sylvia Ratnasamy?, and Scott Shenker?§

?University of California, Berkeley †KAIST ‡CMU §ICSI

Abstract

Elastic scaling is a central promise of NFV but has been
hard to realize in practice. The difficulty arises because
most Network Functions (NFs) are stateful and this state
need to be shared across NF instances. Implementing
state sharing while meeting the throughput and latency
requirements placed on NFs is challenging and, to date,
no solution exists that meets NFV’s performance goals
for the full spectrum of NFs.

S6 is a new framework that supports elastic scaling
of NFs without compromising performance. Its design
builds on the insight that a distributed shared state ab-
straction is well-suited to the NFV context. We organize
state as a distributed shared object (DSO) space and
extend the DSO concept with techniques designed to
meet the need for elasticity and high-performance in
NFV workloads. S6 simplifies development: NF writers
program with no awareness of how state is distributed
and shared. Instead, S6 transparently migrates state
and handles accesses to shared state. In our evaluation,
compared to recent solutions for dynamic scaling of
NFs, S6 improves performance by 100x during scaling
events [25], and by 2-5x under normal operation [27].

1 Introduction
The Network Function Virtualization (NFV) [13] vision
advocates moving middlebox functionality – called Net-
work Functions (NFs) – from dedicated hardware devices
to software applications that run in VMs or containers
on shared server hardware. An important benefit of the
NFV vision is elastic scaling — the ability to increase
or decrease the number of VMs/containers currently
devoted to a particular NF, in response to changes in
offered load. However, realizing such elastic scaling has
proven challenging and solutions to date come with a
significant cost to performance, functionality, and/or ease
of development (§3).

The difficulty arises in that most NFs are stateful, with
state that may be read or updated very frequently (e.g.,
per-packet or per-flow). Hence, elastic scaling requires
more than simply spinning up another VM/container
and updating a load-balancer to send some portion of the
traffic to it.

Instead, scaling can involve migrating state across NF
instances. Migration is important for high performance
(as it avoids remote state accesses) but its implementation
must be fast (to avoid long “pause times” during scaling
events) and should not be burdensome to NF developers.

In addition, elastic scaling must ensure affinity between
packets and their state (i.e., that a packet is directed to the
NF instance that holds the state necessary to process that
packet), and such affinity must be correctly enforced even
in the face of state migrations. A final complication is
that some types of state are not partitionable, but shared
across instances (see §2 for examples). In such cases,
elastic scaling must support access to shared state in
a manner that ensures the consistency requirements of
that state are met, and with minimal disruption to NF
throughput and latency.

The core of any elastic scaling solution is how state is
organized and abstracted to NF applications. Recent work
has explored different options in this regard. Some [33]
assume that all state is local, but neither shared or migrated
– we call this the local-only approach. Others [25,37] sup-
port a richer model in which state is exposed to NF devel-
opers as either local or remote, and developers can migrate
state from remote to local storage, or explicitly access
remote state – we call this the local+remote approach.
Still others [27] assume that all state is remote, stored in a
centralized store – we call this the remote-only approach.

The above were pioneering efforts in exploring the de-
sign space for NF state management. But, as we elaborate
on in §3, they still fall short of an ideal solution: the local-
only approach achieves high performance but is limited
in the NF functionality that it supports; the local+remote
approach supports arbitrary NF functionality but compli-
cates NF development and incurs long downtimes from
repartitioning state en bloc during scaling events; the
remote-only approach is elegant but imposes high perfor-
mance overheads even under normal operation.

In this paper, we propose a new approach to elastic
scaling in which state is organized as a distributed shared
object (DSO) space: objects encapsulate NF state and
live in a global namespace, where all NF instances can
read/write any object. While DSO is an old idea, it has not
to our knowledge been applied to the NFV context. In par-
ticular, DSO has not been shown to the meet the elasticity
and performance requirements that NFV imposes.

We present S6, a development and runtime framework
tailored to NFV. To meet the needs of NFV workloads,
S6 extends the DSO concept as follows: (1) for space
elasticity, we introduce dynamic reorganization of the
DSO keyspace; (2) to minimize the downtime associated
with scaling events, we introduce a “smart but lazy” state
reorganization; (3) to reduce remote access overheads, we
introduce per-packet microthreads and; (4) to optimize

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 299

performance without burdening developers, we expose
per-object hints via which the developer can inform the
DSO framework about appropriate migration or caching
policies. S6 hides all those internal complexities of
distributed state management under the hood, simplifying
NF development.

We present three elastic NFs implemented on top of
S6: NAT, PRADS (a network monitoring system [6]),
and a subset of the Snort IDS [8]. We show that NFs on
S6 elastically scale with minimal performance overhead,
and compare them to NFs built using prior approaches. A
local-only system like E2 [33] cannot support two of our
use-cases (NAT and PRADS) because it does not support
shared state. Compared to OpenNF [25], a state-of-the-art
framework based on the local+remote approach, S6
achieves 10x - 100x lower latency while sustaining 10x
higher throughput during scaling events. Compared to
StatelessNF [27], a state-of-the-art framework based
on a remote-only approach, S6 achieves 2x - 5x higher
throughput under normal operation.

2 Background: NF State Abstractions

The difficulty of elastic scaling arises in how to handle
NF state appropriately. NFs keep state about ongoing
connections (e.g., TCP connection state, last activity time,
number of bytes per user-device, a list of protocols used
at a given IP address). NFs read and update a state while
processing a packet and reuse the updated state to process
subsequent packets. Stateful NF instances should main-
tain correct NF state collectively to prevent the inconsis-
tent or incorrect behavior. Also, the system must handle
general forms of state sharing among instances, as we
will present in this Section. Such NFs’ behavior requires
significantly more care than merely spinning up another
NF instance and sending some portion of traffic to it.

We categorize NF state based on whether it is parti-
tionable. We say that state is partitionable if it can be
distributed across NF instances in a way that state is
only locally accessed, assuming a certain traffic load
balancing scheme. For example, per-flow state (such as
state for individual TCP connections) is partitionable, if
traffic is distributed on a flow basis. On the other hand, a
counter for the total number of active flows is an example
of non-partitionable state, since all NF instances need to
update the counter.

Whether state is partitionable or not is important
since it determines both the mechanisms needed to
manage that state and the achievable performance levels.
With partitionable state, we can collocate state with the
NF instance that processes it, and hence efficient state
migration is key to achieving high performance. If state
is not partitionable, high performance requires a different
set of techniques: e.g., caching state (when its consistency

Apps \ State Partitionable Non-partitionable

NAT -
Address mapping entry
Available address pool

Firewall Connection context -
Load
balancer [11, 21]

Connection - server
mapping

Server pool usage statistics

Traffic
Monitoring [6]

Connection context
Per-host context;
Statistics for packets,
used protocols and host

IDS/IPS
[8, 10, 34]

Connection context
A set of certificates, malicious
servers, or infected hosts;
Per-host port scanning counter

Web proxy [9] Connection context Statistics for cached entry
EPC [3] User state SLA/Usage per device/plan
IMS [5] SIP / RTP sessions Usage accounting per user

Table 1: Examples of state in popular NF types

semantics allows it), placing state to minimize remote
accesses, and minimizing the cost of remote state access.

Most non-partitionable NF state also provide oppor-
tunities for efficient sharing. We can categorize state by
whether it is updated mostly by a single or multiple in-
stances. From our observation, single-writer state tends to
be read-heavy, thus caching or replication can be effective.
When the state is updated by multiple writers simultane-
ously (e.g., global counters), looser consistency is often
tolerable so as to trade freshness of data for performance.

Table 1 lists examples of partitionable and non-
partitionable state found in some real-world NFs. We see
that both forms of state are common in real-world NFs.
For example, traffic monitoring systems [6] maintain
state at both the connection (partitionable) and the
host (non-partitionable1) levels. We also note that state
variables, whether partitionable or not, typically relate to
each other forming complex data structures. For example,
traffic monitoring systems manage a global table of hosts,
each referencing a list of its active connections.

3 State Management for Elastic Scaling
State management for elastic scaling of stateful NFs in-
volves many design options, such as where to place state
and when to initiate migration. They all affect the overall
NF performance, in terms of throughput and latency.
Existing approaches cause high performance overhead,
either during scaling events (i.e., instances join and leave)
or under normal operations (i.e., no ongoing scaling
events). In this section, we discuss the limitations of their
approaches in §3.1 and propose our new approach in §3.2.

3.1 Limitations of existing approaches

Figure 1 shows the typical components of an NFV
architecture as assumed by prior research [27, 27, 33, 37]
and industry efforts [13]. An NFV controller [24, 33]
manages NF instances that run on servers, while an SDN

1No load balancing scheme can ensure data locality of state for both
source and destination hosts at the same time.

300 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

controller manages the network fabric between servers,
including how traffic is load-balanced across the different
NF instances. Responsibility of NF state management—
initiating migration, placement, etc.—resides in the NF
controller. We now discuss existing approaches to NF
state management.

Local-only state: Early work on NFV management [22,
24, 33, 35, 38] typically assumed that NF state is parti-
tionable and hence they do not address the issue of shared
state. Some (e.g., E2 [33]) address elastic scaling but for
NFs with per-flow state only. In such cases, state migra-
tion is avoided by directing only new flows to new NF
instances. Thus, these early systems do not accommodate
NFs with shared or more general (i.e., beyond per-flow)
state, which is common in practice (Table 1). Hence, we
will not consider solutions based on a “local-only” model
further in this paper.2

Remote-only state: In this model, all NF state is kept in
a standalone centralized store. First proposed by Kablan
et al. [27], the elegance of this model is that support for
state sharing, consistency management, and durability (of
state) moves to the centralized store, while the NF in-
stances themselves are stateless and hence can be easily
added or removed. StatelessNF [27] uses this approach to
build various NFs such as a NAT, Firewall and TCP re-
assembler.

Unfortunately, this approach comes at the cost of
performance. In statelessNF, all state accesses are re-
mote: not only do these remote accesses inflate packet
latency, they also consume extra CPU cycles and network
bandwidth for I/O to the remote store. Our results in
§7.2 show that, relative to an NF that uses local state,
a remote-only approach can lead to a 2-3x degradation
in throughput and a 100-fold increase in packet latency.
Problematically, these overheads are incurred even under
normal operation (i.e., in the absence of scaling events)
and grow with the number of state accesses and the size
of messages. Recent work reports that such state accesses
are frequent in NFs: e.g., StateAnalyzr [28] reports that
typical NFs maintain 10-100s of state variables that are
per-flow or shared across flows.

Local+Remote In this model, state is distributed across
NFs and exposed to NF developers as either local or re-
mote. All NF state is defined (by the developer) to be either
local or remote, and is accessed accordingly. OpenNF [25]
and SplitMerge [37] adopts this model. For high perfor-
mance, partitionable state is typically defined as local
state (similar to local-only NFs) while non-partitionable
state requires explicit push/pull function calls to synchro-
nize with remote state.

2We note that systems such as E2 could be augmented with the state
management capabilities that we and others [25, 27, 37] propose.

NF1
NF	controller

Packets

NF2

SDN	controller

Forwarding	rule

Figure 1: Typical components of an NFV architecture

In this model, state management plays two roles: (1)
implementing access to remote state, (2) migrating state
upon scaling events so as to not break local memory
accesses. This functionality is implemented by a state
management framework (such as OpenNF) working in
concert with the NFs and SDN controllers. Under normal
operation, the local+remote approach has the potential to
achieve throughput and latency comparable to the previ-
ous models by migrating state to be co-located with the NF
instances that access it. Unfortunately, the overhead dur-
ing scaling events is high in this model. The reason stems
from the fact that state is explicitly defined and accessed
as local or remote. When a new NF instance is launched,
all state that may be accessed as local state at the new NF
instance must be migrated over to it before any access oc-
curs (since otherwise the local access would simply fail).

Scaling events thus result in “stop the world” behavior,
which involves the following steps: first, the SDN
controller buffers traffic destined for both the old and
new instance, by rerouting traffic from the fabric/load-
balancer to itself; next, the state management controller
coordinates the migration of relevant state from the old
to new NF instance; once migration completes, the SDN
controller releases buffered traffic and coordinates with
the fabric/load-balancer to turn off detouring traffic to
the SDN controller. This approach can lead to long pause
times during which both old and new NF instances stop
processing packets while state is repartitioned. This is
also complex to implement due to tight coordination
among the SDN controller, NF controller, and the inline
switches/load-balancer.3

As we show in §7.1, the local+remote approach lead
to very long pause times for practical NFs. For example,
PRADS implemented on OpenNF incurs a pause time
of 490 ms when migrating only 1,500 flows despite
extensive optimization to the process. In practice, the
pause time is likely to be even higher considering that a
typical 10 Gbps link has tens of thousands of concurrent
flows [43].

3A subtle additional challenge is that these components often come
from different vendors, complicating the adoption of such techniques.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 301

3.2 Our approach: Distributed shared state

The limitations of the aforementioned approaches lead us
to consider a new approach, the distributed shared state
model, which is familiar from distributed computing.
Here, state is distributed among the NFs, and can be
accessed by any NF. However, the NF developer makes
no distinction between local vs. remote state. Instead,
all state variables reside in a shared address space and
the state management framework transparently resolves
all state access. The framework is also responsible for
deciding where state is placed and migrating state across
NF instances when appropriate.

Done right, this model can achieve throughput and
latency comparable to the local-only model by migrating
state to be co-located with the NF instances that access it.
This model can also avoid the long pause-times incurred
by the local+remote approach. Because there is no
distinction between local and remote state, no proactive
migration is required during scaling events. The overhead
of migration is gradually amortized as packets arrive;
e.g., for the same PRADS scenario above, the pause-time
can drop to under 1 millisecond (§7). For the same reason,
state migration no longer needs tight coordination with
traffic load-balancing, hence reducing the system com-
plexity associated with the local+remote model. Finally,
the distributed shared state model simplifies NF devel-
opment. Developers can write NFs on top of a uniform
interface for state access, local or remote, outsourcing
the underlying details of state lookup, remote access, and
migration to the state management framework.

To the best of our knowledge, we are the first to
apply distributed shared state to NFV. We highlight two
challenges distinct from other application domains. NFs
have distinct performance requirements from traditional
cloud applications [18,31]. Furthermore, elasticity makes
it more difficult, dynamically reorganizing the structure
of state space into the new set of NF instances.

Achieving high performance: NFs have I/O intensive
workload, requiring very high throughput on the order of
millions of packets/s with sub-millisecond latency. Given
these requirements, only a few hundreds or thousands of
CPU cycles are available for every packet.

The key to achieving high performance is twofold.
Firstly, we should reduce the number of remote accesses
by leveraging the state-instance affinity and supporting
efficient sharing. As each type of NF state has different ac-
cess patterns and consistency requirements [28], the ques-
tion is how to leverage the information while minimizing
developer’s burden. Secondly, we need to minimize the
cost of remote access when it is unavoidable. While we
can hide the latency by processing other packets in the
meantime, it must be done so without increasing program-

ming complexity. The framework should be able to handle
data dependency detection and context stashing [15, 42].

Supporting elastic scaling: As explained above, scaling
events at runtime must not incur significant performance
degradation. Membership change in NF instance group
involves two potential sources of service disruption. First,
as input traffic is distributed across the new set of NF in-
stances, a subset of state variables must migrate to main-
tain locality. Second, in addition to the state variables
themselves, their location metadata must be reorganized
as well, for scalability of the shared state space. The chal-
lenge is how to perform these operations in a distributed
fashion, in order to avoid a single point of performance
bottleneck. Furthermore, the framework must ensure con-
sistent state access during the process, while minimizing
delay in packet processing.

4 S6 Design
S6 is a development and runtime framework for elastic
scaling of NFs. S6 makes the following assumptions,
which are general enough to apply to a wide variety of
deployment scenarios and environments. First, an NF
runs as a cluster of virtualized instances, such as VMs
and containers. Second, the network somehow distributes
input traffic across instances. Lastly, an external NFV
controller/orchestrator triggers scaling events to adapt to
load change.

S6 does not demand any particular network load
balancing mechanism or NFV controller behavior for
correctness. Therefore they are out of the scope of this
paper. One desirable property is that input traffic be
distributed across instances on a flow basis as like most
of load-balancers and switches already are doing, so that
S6 can leverage the state-instance affinity for high perfor-
mance. S6 differs from the existing NF state management
solutions [25, 37], all of which require sophisticated run-
time coordination across NFV controller, SDN controller,
and NF instances. S6’s decoupling from the load-balancer
and SDN controller reduces system complexity.

We summarize the main design components: 1) S6
provides the global DSO shared by all NF instances.
We choose ‘object’ as a basic unit of state. An object
encapsulates a set of data and its associated operations,
allowing access control and integrity protection of state.
All objects in the space are accessible with a uniform API,
regardless of where the objects physically reside. 2) Our
object abstractions provide NF developers with knobs to
specify object access patterns. The S6 framework uses
this information to improve performance by reducing
the number of remote state accesses. 3) When remote
state access is inevitable, S6 mitigates its cost by hiding
latency with microthreads; NF worker instances can
keep processing other flows only if they have no data
dependency on outstanding accesses to remote objects.

302 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Node	A
(Requester)

Node	B
(Key	owner)

Node	C
(Object	owner)

object	space

key	space where(Key1)=C

.......
get(Key1)
.......

NF	app
hash(Key1)=B

ObjectKey1
migrationable

Figure 2: DHT-based Distributed Shared Object Space

4) Upon scaling events, S6 reorganizes the space, while
keeping the workers processing traffic. S6 minimizes
service disruption with the smart but lazy migration of
objects and their metadata. We explain each component
in greater detail below.

4.1 DHT-based DSO space architecture

In the DSO space, state objects are uniquely identified
with a key. Keys can be of any type, such as 5-tuples, host
names, and URLs as necessary. When an NF instance re-
quests an object with some key (e.g., extracted from pack-
ets), S6 returns a reference to the object, rather than the ob-
ject binary itself. With the reference, the instance can read
or update the state by invoking object methods. S6 con-
structs the DSO space as a DHT-based two-layer structure
(Figure 2) of a key layer and an object layer [40]. Both lay-
ers are distributed over NF instances. The key layer keeps
track of the current location of every object, rather than di-
rectly storing objects. This layer of indirection offers great
flexibility in object migration; no broadcast is necessary
to locate an object, although it may reside (if it exists) on
any instance at the moment. The object layer stores the ac-
tual binary of objects. A reference to an object guarantees
accessibility, no matter where the object currently is.

When an instance accesses an object for the first time,
it hashes the key to identify the key owner, the instance
who knows the current object location, the object owner.
The object access request is sent to the key owner first,
then the key owner forwards the request to the object
owner. Once the location of the object is resolved, the
instance caches it so that subsequent object requests can
go directly to the object owner. When an object migrates
to another instance, the key owner must be notified.
The key owner updates the location of the object and
invalidates the cached location in workers.

The key owner takes charge of object creation,
deletion, and its reference creation; Those requests are
serialized and sequentially processed at the key owner.
Once the key owner receives object deletion request,
it rejects subsequence object access requests until new
object creation request comes.

Note that this two-layer structure is only internally
managed. S6 hides the complexity of placing and locating
objects from NF developers, so that they can focus on the
application logic itself.

4.2 Object abstractions: Per-object optimization

We provide an object abstraction that allows developers to
hint to the framework about what caching, migration, and
optimization strategies are appropriate for each object.
Different objects hence have different consistency guar-
antees depending on their usage. While state management
is a generic problem in distributed systems, we focus on
NFs’ distinct state characteristics and access patterns that
we can leverage to achieve good performance.

We first categorize object types into two types depend-
ing on whether the object permits updates from multiple
flows (thus multiple instances): partitionable objects
and non-partitionable objects. Based on the different
characteristics for each state type in §2, we introduce
appropriate optimization strategies for each object type.
APIs in detail and usage examples are in covered in §5.

Partitionable: leveraging state-instance affinity Parti-
tionable objects are primarily used for state that is updated
by a single flow; up to one writable reference to the ob-
ject is allowed. If an instance is holding the writable refer-
ence, other instances have to wait for their turn to acquire a
writable reference. This is enforced at the key owner since
it is a natural serialization point for all reference requests
to the object.

In NF contexts, while partitionable objects have high
affinity on a single instance, but occasionally, its state
affinity may move to other instances. For example,
per-flow objects’ affinity is decided based on the traffic
load-balancing policy of the network, which is not
controlled by S6. As NFs frequently update partitionable
state, often on a per-packet basis, keeping high state-
instance affinity is the key to achieving high performance
for partitionable objects.

Partitionable objects are gradually migrated between
instances when affinity changes. S6 uses a new request
for writeable access from other instances as an affinity
change indicator. When a key owner for a partitionable
object gets an object access request other than the current
object owner, it initiates the object migration process. The
current object owner voluntarily releases the reference
when the local reference count for the object reaches
to zero, then the object is transferred, and the instance
becomes a new object owner. Now in the new object
owner, all accesses to the object locally happens as the
reference points to the object binary in the memory.

Non-partitionable: consistency/performance trading
Non-partitionable objects are concurrently accessed from
multiple flows simultaneously; multiple writable refer-
ences to an object may exist. Supporting shared state with
high performance in distributed systems is generally dif-
ficult or impossible to achieve—if an object is very fre-
quently updated by multiple flows in a strongly-consistent
manner, it does not scale and S6 cannot help it. Fortu-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 303

nately, we found that the majority of non-partitionable
state in NF applications does not require frequent updates
(e.g., one update per flow) or allow trading consistency for
performance, as shown in Table 1. S6 provides three op-
timization mechanisms for non-partitionable objects that
NF developers can leverage.

First, S6 supports object access via method call ship-
ping, rather than migrating objects. This prevents objects
from bouncing between instances, to avoid wasting
in-flight time. The method calls are applied serially in the
order of request arrival at the object owner, preserving the
internal object consistency. For such non-partitionable
objects, NF developers need to design the objects to be
commutative, i.e., any order of methods calls should pro-
duce an acceptable result. Additionally, S6 supports un-
tethered update, which allows remote object update with-
out blocking if there is no need to wait for its completion.

Second, S6 supports abstractions to design objects to
enable trade-off between consistency and performance. If
a read method on an object class is tolerant of stale results,
instances can cache the results of the method locally. NF
developers can bound the staleness for each read method,
so that S6 can periodically refresh the cached results with
newer ones.

Third, S6 supports object replication, so that multiple
instances can update their local replica. Those replicas are
regularly merged to the main object at the object owner.
NF developers are expected to provide this merge func-
tion since it is very object-specific. Shared counters are
a prime use case of this local update and merge. Frequent
updates are done locally, while (infrequent) reads on the
counter cause local numbers to be merged globally.

4.3 Microthreads: Hiding the cost of remote access

Even with above optimizations for objects, blocking
remote access is necessary when waiting for migrating
objects, refreshing the cache, or dealing with objects with
strong consistency. The cost of remote state access is
high. Suppose that an NF instance issues an RPC request
and waits for its response, in order to process a packet.
Assuming 10us round-trip time between NF instances,
the latency translates to 30,000 cycles on a 3 GHz
processor. We can hide this latency with concurrency; the
NF can process other pending packets to keep the CPU
busy, as long as they do not have data dependency on
the RPC or introduce packet reordering in a flow. Once
its response arrives, the NF continues processing the
packet(s) that were blocked on it.

We adopt a multi-threaded architecture in favor of
ease of NF development to maintain execution contexts
of blocked flows. The other option was an event-driven
architecture, but it hurts programmability since de-
velopers must manually manage to save and restore
contexts [15, 42] for every state access. Another issue

is that whether a method call would block or not must
be visible to the NF developers, which adds additional
complexity to the application logic. In contrast, with
multi-threaded architecture, developers can program
packet processing easily while all thread scheduling is
automatically done by the S6 runtime.

To minimize the performance overhead of multi-
threading, S6 utilizes cooperative, user-space “mi-
crothreads”. User-level microthreads are much more
lightweight than kernel threads, since non-preemptive
scheduling is significantly simpler, and context switching
does not involve kernel/user boundary crossing. It also
scales up to millions (not thousands) of microthreads
thanks for their small footprint.

S6 manages a pool of microthreads to avoid thread
construction/destruction cost. A microthread runs for
each received packet. Whenever the thread is about to
block (e.g., an object is remote and/or in migration, cache
entry is being refreshed, data dependency is detected as
another microthreads is holding a reference, etc.), the
microthread yields to other pending threads and wait to
be rescheduled after the blocking condition has been re-
solved. This non-preemptive scheduling is automatically
done by S6 and transparent to the NF developer. When
multiple microthreads are ready to resume, S6 schedules
one with the longest wait time to avoid packet reordering
within a flow and to minimize latency jitter.

4.4 Smart but lazy DSO keyspace reorganization

When the membership of NF instances changes—due
to scaling events or node failures—S6 must reorganize
the DSO space for the new set of instances. This reor-
ganization involves both object space and key space. As
we illustrated in §4.2, the object space is repartitioned
automatically and gradually for new state-instance
affinity, as NF instances access state objects. Assum-
ing reference locality—most state access is done to a
small number of objects—frequently accessed objects
are quickly migrated to new object owners, incurring
minimal performance impact.

On the other hand, like the object space, S6 ensures
that the key space reorganization is also done gradually
so as to minimize performance impact. Suppose that we
reorganize the DSO key space from Si to Si+1, which use
hi(key) and hi+1(key) as lookup hashes for finding key
owner respectively. Reorganization must not break the
coherency of the keyspace, such that any key record is
neither lost nor owned by multiple key owners. At the
same time, we do not want to pause the entire system
for coherency; instead NF instances lazily migrate key
ownership from hi(k) to hi+i(k) in the background
as necessary. Our keyspace reorganization algorithm
ensures coherency even in the middle of scaling process.

304 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

When the scaling process starts, new key access
requests go to hi+i(k). The new owner hi+1(k) check if the
previous owner hi(k) has a record for k, and if so, the new
key owner pulls the record. During the scaling process,
every new key lookup requires two-hop routing. After
the keyspace converges to Si+1 (all key record migration
is completed), key lookups can be done with the normal
one-hop routing again.

Dealing with race conditions: One challenge comes
from the fact that we cannot assume that all nodes start
and finish the scaling process exactly at the same time. For
example, if two nodes A (previous owner of k, hi(k)) have
not been notified the scaling process and run in ‘normal’
operation but B (next owner of k, hi+1(k)) start ‘scaling’
operation, both two nodes would claim the ownership for
k. This corner case may result in two key records for k
created in both node A and B.

To prevent such conflict, S6 performs scaling in two
stages: pre-scaling and scaling stages. The workers
transition to scaling stage only if the controller has
confirmed that all workers are in pre-scaling state. This
barrier ensures that nodes in the ‘normal’ and nodes in
the ‘scaling’ stage do not coexist. Nodes in pre-scaling
stage do not actively transfer key ownership yet, while
being aware that other nodes may be in scaling process.
Ensuring that there is always a single key owner exists,
but not two or none, is done with the following rules:

R1 Preventing double ownership Suppose that node A
(prev owner, hi(k)) is in ‘pre-scaling’ and node B (next
owner, hi+1(k)) is in ‘scaling’. In this case, hi(k) should
be the single owner for k.

Since pre-scaling nodes can coexist with nodes still in
‘normal’ stage, node A should serve hi(k). Meanwhile,
node B hi+i(k) have more contexts about scaling process
than A. Until node A goes into ‘scaling’ stage, it defers
claiming the ownership for k, but keeps forwarding
requests to A.

R2 Preventing lost ownership Suppose that node A
(prev owner, hi(k)) is in ‘scaling’ and node B (next owner,
hi+1(k)) is in ‘pre-scaling’. If k is for a new object,
hi+1(k) should be the single owner. If k is for an existing
object, hi(k) should be the single owner.

In this case, no one claim the ownership of k, and the
two node forward requests on k to each other. We need to
prevent such loop. Let’s assume that A receives a request
on k. If k is for existing objects and A owns the key since
B hasn’t claimed the ownership. A keeps serving the
requests on k, until B claims ownership of k. If k is for
new objects, then B doesn’t have any information of k.
Therefore B would forward the request to A. A potential
loop is prevented by attaching version number to the
forwarded requests.

Category API Description

Object
SingleWriter Exclusive writeable
MultiWriter Concurrent writeable

Method
const stale Cached read
untethered Untethered update
merge(Object&) Merge two objects

Data
Structure

S6Map<Key, Object> Define a map in DSO
S6Ref<Object> Reference to an object
S6Iter<Object> Iterator of collections

S6Map
(DSO)

create(Key&,Flag&) Create an object
get(Key&) Retrieve an object
remove(S6Ref<>&) Remove an object

Table 2: S6 Programming API

State Type Examples
Object
Annotation

Method
Annotation

Partitioned
UDP/TCP
connection state SingleWriter -

Non-partitioned
freq update

Performance
statistics MultiWriter

untethered
stale
merge

Non-partitioned
read-heavy

NAT mapping
entry SingleWriter stale

Collection of
multi-type
state objects

linked-list
hashtable

Non-intrusive data structures
(§8.1)

Table 3: Common types of NF state and their annotations

5 Using S6
We introduce our programming model (§5.1) and provide
some examples of various NFs (§ 5.2).

5.1 S6 Programming model

Table 2 summarizes the S6 API. From a user’s perspec-
tive, S6’s core components are the shared object space
and tasks.

We provide two types of objects depending on whether
the object permits update from multiple writers (NF in-
stances). SingleWriter allows exclusive writes from
a single instance. MultiWriter allows concurrent
writes from multiple instances simultaneously. Methods
on objects can be annotated appropriately to allows more
optimization such as cached read (const stale),
update-and-forget (untethered), or regularly pushing
merged local updates (merge) into the object owner.
Then, S6 supports appropriate optimization on behind
based on object type as explained in previous section
§4.2. Figure 3 shows an example implementation of an
object class used in PRADS [6]. It is exactly same as
normal object oriented design only except the additional
annotations we introduce. In fact, from our survey of
popular NFs in Table 1, we found that most of NF state
falls into one of four types shown in Table 3.

S6 provides two types of tasks: data-plane and control-
plane. Data-plane tasks perform packet processing
on input network traffic. Control-plane tasks perform
out-of-band operations, such as updating configurations

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 305

class HostAsset: public MultiWriter {
public:
void update_service(Service s) untether;
void update_os(OS os) untether;
uint64_t first_detect_time() const stale;
uint64_t last_detect_time() const stale;
void merge(HostAsset local);

private:
addr_t ip;
uint64_t first_detect_time;
uint64_t last_detect_time;
List<Service> service_list;
List<OS> os_list;

};

Figure 3: A sample S6 object definition of PRADS’s
per-host network asset object

S6Map<IPKey, Asset> g_asset;
S6Map<FlowKey, Connection> g_conn;

// data-plane task
FlowKey fkey(sip, dip, sport, dport);
S6Ref<Connection> c = g_conn.create(fkey);

...
if (new_os_asset) {

S6Ref<Asset> asset = g_asset.get(sip);
asset->update_os_asset(new_os_asset);

}
...

// control-plane task
S6Iter<Asset> *it = g_asset.get_iterator();
while (it->next())

log_asset(it->key, it->value);

Figure 4: A sample implementation of PRADS tasks

or processing user queries. Both types of tasks have
access to the shared object space with a uniform interface.
Figure 4 shows an application implementation including
one data-plane task for packet processing and one
control-plane task for logging the per-host assets.

5.2 Programming NFs

5.2.1 Sample applications

We have chosen various applications to implement or
port. Table 4 lists the state objects in those NFs.

Network Monitoring System (PRADS) PRADS [6] is
a Passive Real-time Asset Detection System in Linux. It
allows network administrators to access real-time data on
types of protocols, services, and devices on their network.

Intrusion Detection System (Snort-rule) We implement
IDS which monitors packets using Snort [8] rules. We bor-
row the rule compilation and detection code from the orig-
inal Snort code base.

NAT We implement NAT (Network Address Translator)
by following the algorithm described in statelessNF [27],
so that have the same per-packet/per-flow access patterns
with their implementation.

NF State Size (B)* Update Access Frequency

PRADS

Flow 160 Exclusive Per-packet RW
Statistics 208 Concurrent Per-packet RW

Asset 112+64n Concurrent
Rarely R
Per-packet W

Hashtable of flows 40n Concurrent Per-flow RW
Hashtable of assets 32n Concurrent Per-flow RW

IDS

Flow context 160∼ 32k Exclusive Per-packet RW
Whitelisted host 16 Exclusive Per-packet RW
Malicious server 12+28n Concurrent Per-flow RW
Hash table of
Malicious server 32n Concurrent Per-flow RW

Hash table of
whitelisted host 32n Concurrent Per-flow RW

NAT
Address Pool 8k per IP Exclusive Per-flow RW

NAT entry 8 Exclusive
Per-packet R
Per-flow W

* n is the number of elements in the structure.

Table 4: States, update patterns, and access frequencies
of NF applications we use.

.

5.2.2 Experiences of porting NF applications

We begin with the assumption that the NF application
to port is in an OOP (Object-Oriented Programming)
model. Since the baseline code of PRADS is in C, a
non-OOP language, our first step is to convert structs
to C++ objects. Then we start porting these objects in our
S6 programming interface.

Porting States Objects: To convert the existing object
classes to S6-compatible object classes, we need to (1)
identify globally accessible objects, (2) analyze their up-
date patterns, and (3) check the applicability of loose con-
sistency.

In Table 4 we list the states we have identified to be
globally accessible and their update patterns: four simple
objects (Flow, Statistics, Asset, and Configuration) and
two collections of objects (Flow hashtable and Asset
hashtable). After identifying the simple objects, we de-
cide their types as SingleWriter or MultiWriter
according to the update pattern. We useS6Map to support
hash tables for flows and assets, and S6Iter to iterate
through the list of assets. In case of more complex applica-
tions, StateAlyzr [28] can help identifying state variables
which need to be shared and their update patterns.

Now the application is compatible with S6 and should
run correctly. Next, we turn to performance improvement
by loosening the consistency level on objects. We design
the Asset and Statistics objects to be commutative, and all
their reads as cached reads and all updates as untethered.

Porting Tasks: PRADS has a simple loop processing
packets using libpcap which is straightforward to port
to S6’s data plane task. PRADS has other out-of-band
tasks from network administrators like generating a log
of current assets. We implement these out-of-band opera-
tions as control-plane tasks.

306 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

5

10

15

20

0
100
200
300
400
500
600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

T
hr

ou
gp

ut
 (K

pp
s)

L
at

en
cy

 (
m

s)

Time(s)

xput (NF1) xput (NF2) 99-% latency 50-% latency

(a) OpenNF, 10 kpps, 1.5k flows for migration

0
100
200
300
400
500
600
700
800

0
10
20
30
40
50
60
70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

T
hr

ou
gp

ut
 (K

pp
s)

L
at

en
cy

 (
m

s)

Time(s)

xput (NF1) xput (NF2) xput (NF3)
99-% latency 50-% latency

(b) S6, 700 kpps, 8k flows for migration

Figure 5: Performance comparison with PRADS scale-out events

6 Implementation
Our implementation of S6 has three main components:
the S6 runtime, the S6 compiler, and the NFV controller.

Runtime The S6 runtime plays three roles. First, it man-
ages the DSO space distributed across nodes. It tracks
objects location and controls object accesses from multi-
ple instances to support exclusive or concurrent accesses
per object type. Second, it manages S6-compatible ob-
ject references to provide the S6 programming interface.
The S6 runtime intermediates every access to objects and
performs remote operations or initiate object migration
if necessary. Third, it schedules microthreads for data-
plane and control-plane tasks. Whenever a microthread is
about to block due to remote access, the runtime schedules
another pending microthread and continues to process
packets without blocking. We use the boost co-routine li-
brary [12] to implement non-preemptive, user-level multi-
threads.

S6 Compiler While S6 requires a custom programming
interface in the source code, there is no convenient way to
extend C++ syntax. Instead, we implemented a source-to-
source compiler, which translates S6-extended C++ code
into plain C++. The generated code abstracts away im-
plementation details of DSO implementation under the
hood. For example, when a method is invoked, the gen-
erated code checks if the state object is local or remote to
call appropriate functions. We implement the compiler on
top of clang-3.6 library [14] to perform syntax analysis of
a developer’s code.

NFV Controller We built a simple NFV controller to
manage the S6 instances. It runs an NF cluster by launch-
ing S6 instances and initiates scaling-in/out events based
on network workloads. The controller also relays out-of-
band tasks such as queries or updating configuration from
the operators to NF instances.

7 Evaluation
We start our evaluation of S6 with its application-level
performance with the scale-out NFs we ported in §5.2.
We examine how scaling events impact S6 performance
during scaling events in §7.1, and under normal operation
in §7.2. Then we show the effectiveness of design choices
in S6 with a series of micro-benchmarks in §7.3

Evaluation setup We use Amazon EC2 c4.xlarge in-
stances (4 cores @ 2.90GHz) for experiments. NF in-
stances run as a Docker container, across the virtual ma-
chines in the cluster. Our workload is synthetic TCP traf-
fic based on empirical flow distributions in size and arrival
rates. For all experiments shown, we measure the overall
throughput and latency measured at input/output ports of
each NF. For micro-benchmarks, we use a dedicated In-
tel Xeon E5-2670 (2×8 cores @ 2.30GHz) server, with a
10 G link for data channel and another 10 G for state chan-
nel for inter-instance communication.

7.1 Elastic Scaling

How well S6 performs during scaling events? We
compare S6’s scaling-out performance with OpenNF us-
ing PRADS on each framework. Figure 5(a) shows the
throughput and latency of migrating 1.5k flows at 10 kpps
workloads using OpenNF. Even with the highest opti-
mization level OpenNF supports, the throughput drops
and the latency increases up to hundreds of milliseconds.
Not shown, we tested the exact same workload with S6.
S6 shows no visible throughput fluctuation and only a few
hundreds of microseconds increase in latency.

Figure 5(b) shows PRADS scale-out performance
on S6 with a higher input workload, 700 kpps with 8k
concurrent flows. There is not any noticeable through-
put degradation (and also zero packet loss). The state
channel becomes temporarily congested from object
migration, key-space re-partitioning in addition to the
shared variable accesses. Still, the peak latency around
tens of milliseconds during scaling is transient—within a
0.1 second window—and 10x lower while sustaining 10x
higher throughput than OpenNF.

How does workload affect performance during scaling
events? We now consider S6 scaling for a synthetic NF, in
which we can configure the number of state objects and
their size. We send 1 Mpps network load to a single NF
instance. Then we initiate a scale-out event, launching an-
other instance and split the traffic. As a result, half of the
objects in the original instance move to the new instance
as packets arrive. We vary the number of objects and the
object size and measure the end-to-end packet processing
latency.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 307

0.001

0.01

0.1

1

10

100

1000

256B 1KiB 4KiB 16KiB

L
at

en
cy

 (m
s)

Size of objects to migrate

All packets
Packets with remote access

16k Objects migration

(a) Empirical traffic / object size

0.001

0.01

0.1

1

10

100

1000

1k 4k 16k

L
at

en
cy

 (m
s)

Number of objects to migrate

Object size: 4KiB

(b) Empirical traffic / object space size

0.001

0.01

0.1

1

10

100

1000

1k 4k 16k

L
at

en
cy

 (m
s)

Number of objects to migrate

Object Size: 4KiB

(c) Worst-case traffic

Figure 6: Latency (1-25-50-75-99%-iles) during object re-partitioning

1

10

100

1000

10000

NAT PRADS IDS

La
te

nc
y

(u
s)

0

0.2

0.4

0.6

0.8

1

NAT PRADS IDS

R
el

at
ei

ve
 T

hr
ou

gh
pu

t

local-only remote-only distributed/shared

Figure 7: Performance of NFs implemented on different
NF state management abstractions

Figures 6 (a) and (b) show latency during the scal-
ing process. The scaling process takes 100s-1,000s of
milliseconds depending on workloads. As shown in the
graph, the peak latency is sub-millisecond except for
16 KiB (a) objects, as the state channel to transfer objects
among instances gets congested. However, even with
the state channel being a bottleneck the peak latency is
temporary (re-partitioning ends within a second), and
median latency remains under a millisecond. The tail
latency comes from packets accessing objects remotely
due to gradual migration, and subsequent accesses
become local without incurring network round-trips.

We also evaluate a worst-case scenario with bursty
object migration. We generate traffic in a round-robin
fashion (i.e., packets are generated sequentially from
the flow pool) so that all per-flow state objects migrate
back-to-back. Figure 6(c) shows that the peak latency
increases as more objects migrate and the state channel
becomes more congested. Similarly to the previous
graphs, the peak latency lasts only for 500 ms, and the
median latency stays under a millisecond.

S6 creates user-level microthreads for non-blocking
object migration and key space re-partitioning. The over-
head of microthreads was very lightweight for all cases;
while S6 can manage up to millions of microthreads,
much less is necessary in practice. The maximum number
of concurrent microthreads (not shown in the graphs)
during migration was about 30k for the 16 Kib case, or a
few thousands for other cases.

1

2

3

4

5

6

1 2 3 4 5 6

Sp
ee

du
p

Number of NF instances

Ideal

IDS

PRADS

Figure 8: S6 throughput scalability

7.2 Normal Operation

How does S6 compare to existing approaches? We
compare S6’s performance against the remote-only and
local-only options discussed in §3. The local-only model
serves as an idealized scenario, as the absence of re-
mote access overhead represents a performance overhead.
Since it does not support shared state, we instead replicate
non-partitionable state across all instances, thus resulting
in incorrect NF behavior. For the remote-only design, we
consider StatelessNF [27] as state-of-the-art. While its
source code is not publicly available, we implement the
algorithms as presented in the paper, including the per-
formance optimization techniques. Our remote-only test
uses one remote store and an NF instance; our “distribut-
ed/shared” test (S6) uses two NF instances but measures
the throughput of only one instance.

Figure 7 shows the throughput and latency of each
implementation. The remote-only shows 2-5x lower
throughput and 10-100x times higher latency than the
ideal (local-only) case since it requires multiple remote
state accesses per packet. Another overhead we observed
is that depending on workloads and NF types, the state
channel (for communication between NF instances and
the remote storage) may become more congested than the
data channel itself, even with the applications described in
the StatelessNF paper. In S6 the only remote access is the
first access of a migrating flow context, and all subsequent
accesses are local. S6 shows 82-92% of the throughput
and comparable latency to the local-only, an ideal case.

308 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0.001
0.01
0.1

1
10

100
1000

1k objects 2k 4k 8k

Pe
r-p

ac
ke

t l
at

en
cy

 (m
s)

Number of objects migrated

Single thread Microthreads

(a) Benefit of microthreads

0.1

1

10

100

1000

Blocking Untethered
update

Cache
read

A
cc

es
s l

at
en

cy
 (u

s)

(b) Loose consistency

15.5 M

161 K
16.2 K

1.62 K
166

3.51 M

3.38 M 3.37 M
882 K

164 K

0 1ms 10ms 100ms 1s

C
on

tro
l m

sg
 x

fe
r (

B
/s

)

State staleness

Stat Asset

4 MiB

256 KiB

16 KiB
1 KiB

64 B

4 B

(c) Communication overhead vs. Staleness

Figure 9: (a) Per-packet latency during scale-out with and without microthreading, (b) Read/Write latency for remote
access (1s maximum staleness), (c) Tradeoff between communication channel overhead vs. accuracy of state

How scalable is S6 with the number of instances? Fig-
ure 8 plots the speedup of PRADS and IDS on S6, relative
to the baseline throughput of a single instance. The ac-
tual aggregated throughput is within 2-8% of ideal linear
speedup. We observe little impact on packet processing
latency with increasing number of instances.

7.3 Micro-benchmarks

How much do microthreads improve latency relative
to a single-threaded approach? In this experiment, we
quantify the benefit of microthreading that masks the cost
of remote state access on Figure 9(a). To start, we run
a single instance which owns all per-flow objects with
1 Mpps input load. Then we split the traffic between two
instances, triggering state migration of half of the objects
to the second instance. Here we see that the microthreaded
architecture improves latency by over three orders of mag-
nitude. Microthreads efficiently pipeline processing pack-
ets as they are blocked for object migration. Also, since
most packets are processed locally, the number of out-
standing microthreads remains small: 130-160 during our
experiments.

How much does annotation-based optimization im-
prove state access latency? We compare the performance
of different remote access mechanisms in Figure 9(b):
1) blocking RPC, 2) untethered update, and 3) cached
read. We run two S6 instances, and 16k shared objects are
evenly distributed between two instances. Each instance
randomly accesses one of the 16k objects. Thus half of
the accesses are local, and the other half are remote. The
results show that the latency of untethered updates and
cached read is only a few microsecond, since state access
can be done with local memory reads/writes; actual syn-
chronization happens in the background. However, in the
case of blocking RPC, remote access adds one network
round-trip latency for remote objects.

How much does caching reduce communication chan-
nel overhead? As we discusses in §4.2, with commuta-
tive updates of shared state, we can lower communication
channel overhead by allowing bounded staleness. Fig-
ure 9(b) quantifies the trade-off, with two different types

of shared objects in PRADS. In the case of Stat(istics), a
single object is shared by all instances, and every packet
triggers at least three updates on it. As we allow more stal-
eness, the required communication channel bandwidth
decreases proportionally.

On the other hand, commutativity is not always effec-
tive when compared with per-update RPCs. In the case of
Assets, State objects—per-host assets—are only shared
among flows originated from or destined to the same host.
Since updates to an object are not very frequent, periodic
synchronization performs no better than individual up-
dates. As shown in the graph, staleness less than 100 ms
does not lower the communication channel overhead.

8 Discussion
8.1 State beyond objects

Collections Many NF applications include collection data
structures (e.g., linked list, tree, or hash tables). In S6,
one can build such collections as non-intrusive contain-
ers of references of objects like C++ STL [39]. In non-
intrusive data structures, objects do not need to have a
special pointer for the container to be a member of it (e.g.,
a pointer for the next element in list), but the container
organizes data structures using references of the objects.
One can also specially design a collection structure for
efficient concurrent accesses (e.g., RCU [30]).

Framework-level supports on collections will have
more opportunities to exploit better locality on its ele-
ments. We implements hashtable and read-only iterator
on it and leave more framework-level support for data
structures as future work.

Multi-object transactions S6 natively supports lineariz-
ability – ordering amongst writes to a single object, but
not support serializability – ordering with regard to multi-
ple objects. To support multi-object transactions, NF de-
velopers can implement a custom lock with exclusively
update-able objects. Only a single instance is allowed to
have a reference to the lock object; the other instances
need to wait until the reference is released from the pre-
vious instance. The key owner serializes accesses to the
lock object.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 309

8.2 Fault-tolerance

Fault tolerance for middleboxes and network functions
has been addressed by prior systems like Pico [36] and
FTMB [39]. These systems promise that when an NF fail
in a non-scaled out environment, a new NF quickly come
back online – with all of the state of the failed NF – and
resume processing data.

The most straightforward remediation is to adopt
Pico’s (checkpoint-based, per-state snapshot) or FTMB’s
(checkpoint and replay-based, VM snapshot) algorithms
at on per node basis. Both systems interpose on accesses
to middlebox state during packet processing; these
systems also have the ability to interpose on accesses
made by S6’s RPC calls from other NF instances. Both
Pico and FTMB have efficient backup strategies, in that
one ‘backup’ instance can serve as a standby for multiple
‘hot’ NF instances. S6’s knowledge about object access
patterns and consistency gives more opportunity to op-
timize per-object snapshot, balancing between snapshot
frequency and amount of logging operations on it.

An alternative approach to fault tolerance could be to
extend S6’s state management with classic DHT-based
failover recovery. Key ownership—and perhaps even data
itself—could be replicated thrice across multiple DHT
nodes. Hence, if any individual node failed, the rest of the
cluster could immediately continue processing incoming
flows, accessing the remaining replicated state. Nonethe-
less, this approach triples intra-cluster traffic, and likely
increases read/write latencies. We leave exploration of
this approach, its design details, and trade-offs, to future
work.

9 Related Work
In §3, we have discussed E2 [33], Split/Merge [37],
StatelessNF [27], and OpenNF [25]. We do not revisit
them here. There are some specific (not general) NF im-
plementations that internally support horizontal scaling
including Maglev (load-balancer) [21], Protego (IPSec
gateway) [41], and Bro Cluster [34]. These systems
leverage each NF-specific techniques, but cannot be
generalized for other types of NFs.

The design and implementation of S6 are heavily
inspired by previous work. There are many systems
adopting the concepts of DSO to build distributed sys-
tems. RPC frameworks such as (CORBA [1], DCOM [2],
and RMI [4] provide state access in a uniform manner
across heterogeneous languages and software. Thor [17]
is a distributed database system that takes care of object
distribution, sharing, and caching. Fabric [29] is a dis-
tributed application building framework, which focuses
on guaranteeing information security among distrust
users. All of above systems provide uniform access
to objects distributed across nodes, guarantee object
consistency, and provide high availability. Yet, none

of the above focuses on supporting high-performance
requirements such for NFs and elastically adjusting the
number of instances on the cluster with minimal inter-
rupts. S6 extends the DSO to support elastic scaling and
optimal performance both for under normal operations
and during scaling events. We also acknowledge that use
of lightweight multi-threading for masking remote access
latency can be found in other application domains, e.g.,
distributed graph processing [31].

Distributed shared state can exist at different levels
of abstraction from low-level memory to a higher-level
object-oriented model. Distributed key-value stores
provide a wider range of state abstractions such as
blobs [19, 23, 32] and abstracted data types [7], with
properties from ACID to eventual consistency [19]. Par-
titioned Global Address Space (PGAS) allows multiple
machines to share the same virtual address space for
their physical memory [16, 20, 26]. This abstraction is
useful in supporting machine-level optimizations (e.g.,
dirty page tracking [16], RDMA [20]) but is too low-level
for our context. A single page may contain multiple
state variables each with different affinity or consistency
semantics, making it impossible to migrate state for
optimal state-operation affinity. We choose objects to
abstract state, because it allows easy to program various
requirements of objects; it is easy to program integrity
and control accesses to its encapsulated set of data.

10 Conclusion
We presented S6, a framework for building elastic scaling
of NF. S6 extends the DSO model to support elastic scal-
ing of NFs without compromising performance, while
the object abstraction transparently hides the complex
details of data locality, consistency, and marshaling.
S6 introduces a various mean to meet the performance
requirements of NFs: “smart but lazy” reorganization
of DSO space to minimize the performance overhead
during scaling events; micro-threaded architecture to
mitigate remote access latency; and programming model
to trade performance with freshness per object require-
ments. Compared to previous work, S6 shows minimal
performance overhead during scaling events (10-100x
than OpenNF [25]) as well as during normal operations
(2-5x than StatelessNF [27]. Our code is available at
https://github.com/NetSys/S6.

11 Acknowledgments
We thank our shepherd Timothy Roscoe and the anony-
mous reviewers for their invaluable comments. We also
thank Aurojit Panda for the enjoyable discussions and
feedback, Keunhong Lee and Junmin Choe for their help
on evaluations. This work was funded in part by NRF-
2014R1A2A1A01007580, NSF-1553747, NSF-1704941
and Intel corporation.

310 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] CORBA. http://www.corba.org/.

[2] DCOM. https://msdn.microsoft.com/en-us/
library/cc226801.aspx.

[3] Evolved Core Network Implementation of OpenAirInterface.
https://gitlab.eurecom.fr/oai/openair-cn.

[4] JavaRMI. http://www.oracle.com/technetwork/
articles/javaee/index-jsp-136424.html.

[5] openIMS. http://www.openimscore.org/.

[6] PRADS. http://manpages.ubuntu.com/manpages/
wily/man1/prads.1.html.

[7] Redis. https://redis.io/.

[8] Snort++. https://www.snort.org/snort3.

[9] Squid. http://www.squid-cache.org/.

[10] Suricata. https://suricata-ids.org/l.

[11] The Software Load Balancer and Dynamic ADC. http://
inlab.de/load-balancer/index.html.

[12] BOOST Coroutine. http://www.boost.org/doc/libs/
1_60_0/libs/coroutine/doc/html/index.html,
accessed 8 May, 2016.

[13] ETSI NFV. http://www.etsi.org/
technologies-clusters/technologies/nfv,
accessed April 28, 2016.

[14] ETSI NFV. http://clang.llvm.org/, accessed April 28,
2016.

[15] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY, W. J., AND
DOUCEUR, J. R. Cooperative task management without man-
ual stack management. In USENIX Annual Technical Conference,
General Track (2002), pp. 289–302.

[16] CHAPMAN, B., CURTIS, T., POPHALE, S., POOLE, S., KUEHN,
J., KOELBEL, C., AND SMITH, L. Introducing OpenSHMEM:
SHMEM for the PGAS community. In Proceedings of the Fourth
Conference on Partitioned Global Address Space Programming
Model (2010), ACM, p. 2.

[17] DAY, M., LISKOV, B., MAHESHWARI, U., AND MYERS, A. C.
References to remote mobile objects in Thor. ACM Letters on
Programming Languages and Systems (LOPLAS) 2, 1-4 (1993),
115–126.

[18] DEAN, J., AND GHEMAWAT, S. MapReduce: simplified data
processing on large clusters. Communications of the ACM 51, 1
(2008), 107–113.

[19] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. ACM SIGOPS operating systems review
41, 6 (2007), 205–220.

[20] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. FaRM: Fast Remote Memory. In 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
14) (2014), pp. 401–414.

[21] EISENBUD, D. E., YI, C., CONTAVALLI, C., SMITH, C.,
KONONOV, R., MANN-HIELSCHER, E., CILINGIROGLU, A.,
CHEYNEY, B., SHANG, W., AND HOSEIN, J. D. Maglev: A Fast
and Reliable Software Network Load Balancer. In 13th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 16) (Santa Clara, CA, 2016), pp. 523–535.

[22] FAYAZBAKHSH, S. K., SEKAR, V., YU, M., AND MOGUL, J. C.
Flowtags: Enforcing network-wide policies in the presence of dy-
namic middlebox actions. In Proceedings of the second ACM SIG-
COMM workshop on Hot topics in software defined networking
(2013), ACM, pp. 19–24.

[23] FITZPATRICK, B. Distributed caching with memcached. Linux
journal 2004, 124 (2004), 5.

[24] GEMBER, A., KRISHNAMURTHY, A., JOHN, S. S., GRANDL,
R., GAO, X., ANAND, A., BENSON, T., AKELLA, A., AND
SEKAR, V. Stratos: A Network-Aware Orchestration Layer for
Middleboxes in the Cloud. CoRR abs/1305.0209 (2013).

[25] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C.,
GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A. OpenNF:
Enabling Innovation in Network Function Control. In Proceedings
of the 2014 ACM Conference on SIGCOMM (New York, NY, USA,
2014), SIGCOMM ’14, ACM, pp. 163–174.

[26] HOEFLER, T., DINAN, J., THAKUR, R., BARRETT, B., BALAJI,
P., GROPP, W., AND UNDERWOOD, K. Remote memory access
programming in mpi-3. ACM Transactions on Parallel Computing
2, 2 (2015), 9.

[27] KABLAN, M., ALSUDAIS, A., KELLER, E., AND LE, F. State-
less Network Functions: Breaking the Tight Coupling of State
and Processing. In 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17) (Boston, MA, 2017),
USENIX Association.

[28] KHALID, J., GEMBER-JACOBSON, A., MICHAEL, R., AB-
HASHKUMAR, A., AND AKELLA, A. Paving the Way for NFV:
Simplifying Middlebox Modifications Using StateAlyzr. In 13th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16) (Santa Clara, CA, 2016), USENIX Associa-
tion, pp. 239–253.

[29] LIU, J., GEORGE, M. D., VIKRAM, K., QI, X., WAYE, L., AND
MYERS, A. C. Fabric: A platform for secure distributed computa-
tion and storage. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles (2009), ACM, pp. 321–334.

[30] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update:
Using execution history to solve concurrency problems. In Paral-
lel and Distributed Computing and Systems (1998), pp. 509–518.

[31] NELSON, J., HOLT, B., MYERS, B., BRIGGS, P., CEZE, L.,
KAHAN, S., AND OSKIN, M. Latency-tolerant software dis-
tributed shared memory. In 2015 USENIX Annual Technical Con-
fercorence (USENIX ATC 15) (2015), pp. 291–305.

[32] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN,
A., PARULKAR, G., ROSENBLUM, M., ET AL. The case
for RAMClouds: Scalable High-Performance Storage Entirely in
DRAM. ACM SIGOPS Operating Systems Review 43, 4 (2010),
92–105.

[33] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A., RAT-
NASAMY, S., RIZZO, L., AND SHENKER, S. E2: A Framework
for NFV Applications. In Proceedings of the 25th Symposium on
Operating Systems Principles (New York, NY, USA, 2015), SOSP
’15, ACM, pp. 121–136.

[34] PAXSON, V. Bro: a System for Detecting Network Intruders in
Real-Time. Computer Networks 31, 23-24 (1999), 2435–2463.

[35] QAZI, Z. A., TU, C.-C., CHIANG, L., MIAO, R., SEKAR, V.,
AND YU, M. Simple-fying middlebox policy enforcement us-
ing sdn. ACM SIGCOMM computer communication review 43, 4
(2013), 27–38.

[36] RAJAGOPALAN, S., WILLIAMS, D., AND JAMJOOM, H. Pico
Replication: A High Availability Framework for Middleboxes. In
Proceedings of the 4th Annual Symposium on Cloud Computing
(New York, NY, USA, 2013), SOCC ’13, ACM, pp. 1:1–1:15.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 311

[37] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H., AND
WARFIELD, A. Split/Merge: System Support for Elastic Ex-
ecution in Virtual Middleboxes. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2013), nsdi’13, USENIX Asso-
ciation, pp. 227–240.

[38] SEKAR, V., EGI, N., RATNASAMY, S., REITER, M. K., AND
SHI, G. Design and Implementation of a Consolidated Middle-
box Architecture. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (Berkeley, CA,
USA, 2012), NSDI’12, USENIX Association, pp. 24–24.

[39] SHERRY, J., GAO, P. X., BASU, S., PANDA, A., KRISHNA-
MURTHY, A., MACIOCCO, C., MANESH, M., MARTINS, J. A.,
RATNASAMY, S., RIZZO, L., AND SHENKER, S. Rollback-
Recovery for Middleboxes. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication (New
York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 227–240.

[40] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup ser-
vice for Internet Applications. ACM SIGCOMM Computer Com-
munication Review 31, 4 (2001), 149–160.

[41] TAN, K., WANG, P., GAN, Z., AND MOON, S. Protego: Cloud-
scale multitenant ipsec gateway.

[42] VON BEHREN, R., CONDIT, J., AND BREWER, E. Why Events
Are a Bad Idea (for High-concurrency Servers). In Proceedings of
the 9th Conference on Hot Topics in Operating Systems - Volume
9 (Berkeley, CA, USA, 2003), HOTOS’03, USENIX Association,
pp. 4–4.

[43] WOO, S., JEONG, E., PARK, S., LEE, J., IHM, S., AND PARK,
K. Comparison of Caching Strategies in Modern Cellular Back-
haul Networks. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services (New
York, NY, USA, 2013), MobiSys ’13, ACM, pp. 319–332.

312 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

