
Pigasus 2.0: Making the Pigasus IDS Robust
to Attacks and DifferentWorkloads

Zhipeng Zhao,∗ Nirav Atre,‡ Hugo Sadok,‡ Siddharth Sahay,‡
Shashank Obla,‡ James C. Hoe,‡ Justine Sherry‡

‡ Carnegie Mellon University ∗ Microsoft

ACMReference Format:
Zhipeng Zhao, Nirav Atre, Hugo Sadok, Siddharth Sahay, Shashank Obla,
JamesC.Hoe, JustineSherry. 2022.Pigasus2.0:Making thePigasus IDSRobust
to Attacks and DifferentWorkloads. InACM SIGCOMM2022 Conference (SIG-
COMM ’22 Demos and Posters), August 22–26, 2022, Amsterdam, Netherlands.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3546037.3546065

1 Introduction
Intrusion Detection and Prevention Systems (IDS/IPSes) are

critical components of the service chain for many network deploy-
ments. Ever-increasing network line rates and security threats have
imposed substantial performance and correctness requirements on
these systems: 100Gbps+ throughput with 100K+ concurrent con-
nections, while scanning for 10K+ attack signatures in every packet.

Unlike traditional software-based IDS/IPSes (e.g., Snort [2])
which required hundreds of CPU cores to scale to 100Gbps, the
Pigasus IDS/IPS [6] was the first to demonstrate that it is possible
to achieve these goals within the footprint of a single, FPGA
SmartNIC-equipped server. Pigasus performs this feat using a novel,
“FPGA-first” approach to IDS/IPS, where the vast majority of packet
processing (e.g., packet parsing, TCP reassembly, multi-string
pattern matching) is done using a highly-parallel datapath aboard
the FPGA. The FPGA pipeline is able to efficiently filter out input
traffic that is provably innocent, only forwarding ‘suspicious’
packets – a small fraction of the overall input – to the CPU for more
expensive, final-stage processing. Overall, this saves significant
compute, power, and cost compared to a software-based IDS.

However, despite its impressive performance, the original version
of Pigasus (‘Pigasus 1.0’) suffers from three shortcomings that hinder
itsdeploymentpotential. First, Pigasus1.0espousesaone-size-fits-all
processing pipeline, an approach thatmay not be sufficiently general
for real-world deployments. Second, owing to its static datapath, any
divergence from common-case behavior during run-time (e.g., due to
bursty traffic patterns, or transient oversubscription of one or more
modules) may result in significant performance drops. Finally, the
samedesign decisions that optimize Pigasus 1.0 for the common-case
also leave the system vulnerable to Algorithmic Complexity Attacks
(ACAs) [1, 3], a potent class of Denial-of-Service (DoS) attacks tar-
geting compute-intensive network functions like Pigasus.

In this work, we present Pigasus 2.0, a complete re-architecture
of the Pigasus framework that enables compile-time configuration

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9434-5/22/08.
https://doi.org/10.1145/3546037.3546065

of the processing pipeline to cater to different deployment environ-
ments, run-time provisioning of CPU cores to handle FPGA spillover
during periods of oversubscription, and robustness against ACAs
targeting the Pigasus datapath without sacrificing common-case
performance. Compared to Pigasus 1.0, Pigasus 2.0 achieves, on
average, 38% higher throughput during normal operation, and
suffers 90-99% lower loss in goodput due to ACAs.

2 The Pigasus Datapath
To put the design of Pigasus 2.0 into context, we give a brief

overview of Pigasus’s functionality and key modules. Pigasus is a
signature-based IDS/IPS whose goal is to identify network flows
which match one or more attack signatures (‘rules’). The datapath
consists of the following modules:

TCP Reassembler: Reconstructs an in-order bytestream from a
sequence of out-of-order packets. For each flow, packets are stored
in a linked list ordered by sequence number.

Multi-String PatternMatcher (MSPM): A set of fast, lightweight
filters that sift out innocent traffic entirely on the FPGA. Only
‘suspicious’ packets – typically <5% of the input packet rate – are
forwarded to the CPU-side Full Matcher. The MSPM is further
divided into the Fast Pattern String Matcher (FPSM),Header Matcher
(HM), and Non-Fast Pattern String Matcher (NFPSM).

CPU-side Full Matcher: A comprehensive rule checking engine
that processes packets (e.g., performing regular expression search)
deemed to be suspicious by the MSPM.

3 Pigasus 2.0 Design
We now briefly describe the key features of Pigasus 2.0 that

enable workload adaptation and robustness against ACAs.

3.1 Disaggregated Architecture
One of the major changes in Pigasus 2.0 is the use of a disaggre-

gated architecture. In this architecture, all modules are independent
services [5] connected via a standard streaming interface [4]. Disag-
gregation allows Pigasus’ modules to be reused more easily—even
outside Pigasus—and lets us scale them up or down independently to
accommodate different workloads. Here, we describe some features
of Pigasus 2.0 resulting from its disaggregated architecture.

Module scalability: Figure 1 shows the Pigasus pipeline with its
five main modules: TCP Reassembler, FPSM, HM, NFPSM, and the
DMAEngine. In this example only the NFPSMmodule is overloaded,
while all other modules have spare capacity. Yet, Pigasus 1.0’s
monolithic architecture requires thatwe duplicate the entire pipeline
in order to scale the design. This results in wasted FPGA resources,
since most of the modules are overprovisioned. Because Pigasus 2.0

https://doi.org/10.1145/3546037.3546065
https://doi.org/10.1145/3546037.3546065


SIGCOMM ’22 Demos and Posters, August 22–26, 2022, Amsterdam, Netherlands Zhao et al.

Reassembler FPSM HM NFPSMDMA

Reassembler FPSM HM NFPSMDMA

Reassembler FPSM HM
NFPSM

DMA

Pigasus 1.0

Pigasus 2.0

Figure 1: Scalability in Pigasus 1.0 (top) vs. Pigasus 2.0
(bottom). The fill level represents each module’s load.
Pigasus 1.0’s monolithic design requires duplicating the
entire pipeline, even though only the NFPSM is overloaded.
Pigasus 2.0 allows per-module scaling.

employs a disaggregated architecture, users can choose to replicate
only the overloaded module, achieving the same performance as
Pigasus 1.0 while utilizing significantly fewer FPGA resources.

Parameterizedmodules: Besides scalingup individualmodules by
replicating them, Pigasus 2.0 exposes modules’ internal parameters
that let users grow or shrink the module without replication. For
instance, somemodules’ bandwidth are dictated by a configurable
‘width.’ Users can increase the width to increase bandwidth or
decrease it to save resources or make the design fit in a smaller
FPGA. Parameterized modules also improves portability, allowing
some of the modules to be used in applications besides Pigasus.

Pipeline recomposability: In Pigasus 2.0, users can freely
recomposemodules according to their needs. Users define a graph in
a python-based DSL with all the modules that they desire. Users can
even choose to spread modules across multiple FPGAs, connected
using Ethernet, to let Pigasus scale to even higher packet rates.
The tool then automatically generates the interconnect logic to
implement the specified graph. The ability to specify different
graphs also means that users can choose which modules to include
in the pipeline. For instance, users with smaller FPGAs might
choose to not include the NFPSM module, while users concerned
with ACAs can choose to include SurgeProtector [1]. We also hope
that Pigasus 2.0’s recomposability will make it easier for other
researchers to develop and include their ownmodules in Pigasus.

3.2 Dynamic SpilloverMechanism
While the disaggregated architecture gives users many knobs

to tailor Pigasus to their own requirements and workloads, all the
adjustments are made at compile time. To let the system adapt
to changes in workloads at runtime, Pigasus 2.0 also provides a
dynamic spillover mechanism. Since it is not possible to change
the modules on the FPGA fast enough to respond to changes to
incoming traffic, Pigasus instead relies on the CPU to absorb traffic
when one of its modules is overloaded.

3.3 SurgeProtector
In order to maximize throughput while still meeting FPGA

resource constraints, Pigasus heavily prioritizes common-case
performance and memory efficiency. Unfortunately, some of these
designdecisions comeat the cost ofpoor resiliency againstACAs, a po-
tent class of DoS attacks. In anACA, an adversary targets algorithms

with high worst-case runtime complexity, inducing large amounts
of work in the system using a small amount of attack bandwidth,
displacing a significant fraction of innocent traffic in the process.

In the context of Pigasus, both the TCP Reassembler and Full
Matcher are vulnerable to two different kinds of ACAs, allowing
an attacker to displace upwards of 100 bps of innocent traffic for
each bps of attack bandwidth they invest into the attack. Motivated
by this very use-case, recent work proposed SurgeProtector [1],
an adversarial scheduling framework that provides resilience
against ACAs without sacrificing common-case performance.
This framework was recently integrated into the datapath, and
represents a key component of the Pigasus 2.0 artifact.

4 Demonstration Overview
Pigasus 2.0 is publicly available1 and implements all the features

described in this abstract. We exemplify the three key features
described in §3 in the following demonstrations.

D1 – Different workloads and configurations: We will show
how small changes to the configuration graph can trigger large
changes in throughput for different workloads by shifting the
bottlenecked module.

D2 –Dynamic Spillover: Wewill show how the dynamic spillover
mechanism makes the system more robust to sudden bursts of
packets that are bottlenecked by the same module on the FPGA.

D3 – SurgeProtector: We will show how attack workloads
targeting Pigasus’ TCPReassembler and FullMatcher can drastically
reduce throughput, and how adding the SurgeProtector module to
the configuration graph canmake the system robust to such attacks.

Acknowledgments
We thank the anonymous reviewers for their great comments

and feedback. This work was supported in part by funding from
a VMware Systems Research Award, NSF grant #1700521, and by
Intel and VMware through the Intel/VMware Crossroads 3D-FPGA
Academic Research Center.

References
[1] Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, and Justine Sherry. 2022.

SurgeProtector: Mitigating Temporal Algorithmic Complexity Attacks using
Adversarial Scheduling. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM ’22).
Association for Computing Machinery, New York, NY, USA.

[2] Cisco. 2020. Snort 3. https://www.snort.org/snort3. (2020).
[3] Scott A. Crosby and Dan S. Wallach. 2003. Denial of Service via Algorithmic

Complexity Attacks. In 12th USENIX Security Symposium (USENIX Security 03).
USENIX Association, Washington, D.C. https://www.usenix.org/conference/12th-
usenix-security-symposium/denial-service-algorithmic-complexity-attacks

[4] Intel. 2022. Avalon Interface Specifications. Technical Report 683091. Intel.
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-
1/introduction-to-the-interface-specifications.html.

[5] JosephMelber and James C. Hoe. 2020. A Service-Oriented Memory Architecture
for FPGA Computing. In 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL). IEEE Computer Society, Los Alamitos, CA, USA,
91–97. https://doi.org/10.1109/FPL50879.2020.00025

[6] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine
Sherry. 2020. Achieving 100Gbps Intrusion Prevention on a Single Server. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’20).
USENIX Association, 1083–1100.

1https://github.com/crossroadsfpga/pigasus

https://www.snort.org/snort3
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://doi.org/10.1109/FPL50879.2020.00025
https://github.com/crossroadsfpga/pigasus

	1 Introduction
	2 The Pigasus Datapath
	3 Pigasus 2.0 Design
	3.1 Disaggregated Architecture
	3.2 Dynamic Spillover Mechanism
	3.3 SurgeProtector

	4 Demonstration Overview
	Acknowledgments
	References

